^
Contact us  to learn more about
our Premium Content:  News alerts, weekly reports and conference planners
BIOMARKER:

FLT3 D835Y

i
Other names: FLT3, Fms Related Tyrosine Kinase 3, Receptor-Type Tyrosine-Protein Kinase FLT3, Stem Cell Tyrosine Kinase 1, Fms-Like Tyrosine Kinase 3, CD135, FLK-2, STK1, Growth Factor Receptor Tyrosine Kinase Type III, Fetal Liver Kinase 2
Entrez ID:
12ms
Discovery of 3-amide-pyrimidine-based derivatives as potential fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia. (PubMed, Bioorg Med Chem Lett)
To discover next-generation FLT3 inhibitors and gather additional structure-activity relationship (SAR) information, we performed structural modifications of G-749 (denfivontinib) utilizing structure simplification and scaffold hopping strategies...Furthermore, it significantly reduced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP), and strongly inhibited FLT3-mediated signaling pathways. These findings, along with the obtained SAR information, provide valuable insights for the further development of FLT3 inhibitors.
Journal
|
FLT3 (Fms-related tyrosine kinase 3)
|
FLT3-ITD mutation • FLT3 D835Y • FLT3 D835
|
denfivontinib (SKI-G-801)
1year
Target-Capture Next-Generation Sequencing (NGS) for Use in Molecular-Based Research of Myeloid Measurable Residual Disease (MRD) (AMP 2024)
Target-capture NGS provides the opportunity to evaluate many genes in a single assay. Suitability for MRD requires highly uniform and sensitive target enrichment. Our study demonstrated reliable and accurate detection of variants down to 0.05% VAF, providing researchers with the capability to use capture-based NGS for myeloid MRD monitoring.
Next-generation sequencing
|
FLT3 (Fms-related tyrosine kinase 3) • IDH1 (Isocitrate dehydrogenase (NADP(+)) 1) • IDH2 (Isocitrate Dehydrogenase (NADP(+)) 2) • NPM1 (Nucleophosmin 1) • JAK2 (Janus kinase 2)
|
FLT3-ITD mutation • NPM1 mutation • FLT3 D835Y • FLT3 D835 • IDH2 R172K • KIT D816V • IDH1 R132C • JAK2 V617F • IDH1 R132 • IDH2 R172
|
SureSeq™ Myeloid MRD Panel
over1year
Structure-Based Optimization of Pyrazinamide-Containing Macrocyclic Derivatives as Fms-like Tyrosine Kinase 3 (FLT3) Inhibitors to Overcome Clinical Mutations. (PubMed, ACS Pharmacol Transl Sci)
Furthermore, 8v demonstrated ideal anticancer efficacy in a Ba/F3-FLT3-ITD-D835Y xenograft model. The results suggested that 8v can serve as a promising macrocycle-based FLT3 inhibitor for the treatment of AML.
Journal
|
FLT3 (Fms-related tyrosine kinase 3)
|
FLT3 mutation • FLT3 D835Y • FLT3 F691L • FLT3 D835 • FLT3-ITD mutation + FLT3 D835Y + FLT3 F691L
almost2years
An imidazo[1,2-a]pyridine-pyridine derivative potently inhibits FLT3-ITD and FLT3-ITD secondary mutants, including gilteritinib-resistant FLT3-ITD/F691L. (PubMed, Eur J Med Chem)
Recently, several FLT3 inhibitors have demonstrated clinical activity and three are currently approved - midostaurin, quizartinib, and gilteritinib. In summary, compound 24 has inhibition potency on FLT3 comparable to gilteritinib, but a more balanced inhibition on FLT3 secondary mutations, especially FLT3-ITD/F691L which is gilteritinib resistant. Compound 24 may serve as a promising lead for the drug development of either primary or relapsed AML with FLT3 secondary mutations.
Journal
|
FLT3 (Fms-related tyrosine kinase 3)
|
FLT3-ITD mutation • FLT3 mutation • FLT3 D835Y • FLT3 F691L • FLT3 D835
|
Xospata (gilteritinib) • midostaurin • Vanflyta (quizartinib)
2years
Discovery of benzimidazole-indazole derivatives as potent FLT3-tyrosine kinase domain mutant kinase inhibitors for acute myeloid leukemia. (PubMed, Eur J Med Chem)
More importantly, 22f showed single-digit nanomolar GI values in the mutant FLT kinase expressed Ba/F3 cell lines including FLT-D835Y (GI = 0.29 nM) and FLT3-F691L (GI = 2.87 nM). Molecular docking studies indicated that the compound exhibits a well-fitted binding mode as a type 1 inhibitor in the homology model of active conformation of FLT3 kinase.
Journal
|
FLT3 (Fms-related tyrosine kinase 3)
|
FLT3 mutation • FLT3 D835Y • FLT3 F691L • FLT3 D835
2years
N-(3-Methoxyphenyl)-6-(7-(1-methyl-1H-pyrazol-4-yl)imidazo[1,2-a]pyridin-3-yl)pyridin-2-amine is an inhibitor of the FLT3-ITD and BCR-ABL pathways, and potently inhibits FLT3-ITD/D835Y and FLT3-ITD/F691L secondary mutants. (PubMed, Bioorg Chem)
Studies indicate that it mediates proapoptotic effects on cells by inhibiting FLT3 and BCR-ABL pathways, and other possible targets. Compound 1 is more potent against FLT3-ITD than BCR-ABL, and it may have other possible targets; however, compound 1 is first step for further optimization for the development of a balanced FLT3-ITD/BCR-ABL dual inhibitor for the treatment of relapsed FLT3-ITD mutated AML with multiple secondary clinical resistant subtypes such as FLT3-ITD/D835Y, FLT3-ITD/F691L, and cells co-expressing FLT3-ITD and BCR-ABL.
Journal
|
FLT3 (Fms-related tyrosine kinase 3) • ABL1 (ABL proto-oncogene 1) • BCR (BCR Activator Of RhoGEF And GTPase)
|
FLT3-ITD mutation • FLT3 mutation • FLT3 D835Y • FLT3 F691L • FLT3 D835 • FLT3 expression • FLT3-ITD expression
2years
Design, synthesis and biological evaluation of 2-aminopyrimidine derivatives as potent FLT3 inhibitors. (PubMed, Bioorg Med Chem Lett)
Compound 15 also possessed potent antiproliferative activities against BaF3 cells carrying various FLT3-TKD and FLT3-ITD-TKD mutations, indicating its potential to overcome on-target resistance caused by FLT3 mutations. In summary, compound 15 showed promising potential for further exploration as a treatment of AML.
Journal
|
FLT3 (Fms-related tyrosine kinase 3)
|
FLT3-ITD mutation • FLT3 mutation • FLT3 D835Y • FLT3 D835 • FLT3-ITD mutation + FLT3-TKD mutation
2years
Kme-0584, a Highly Potent IRAK1/IRAK4/panFLT3 Inhibitor, Is a Promising Clinical Candidate for Hypomethylating Agent Plus Venetoclax Resistant AML/MDS Patients (ASH 2023)
In primary patient cell lines from FLT3 wildtype (WT) patients, KME-0584 inhibits leukemia stem cell progenitor function as measured by the colony formation assay in methylcellulose with higher potency than IRAK4 inhibitor compounds that lack IRAK1 activity such as CA-4948 (Emavusertib)...Given that monocytic-like subtypes of AML are resistant to Venetoclax plus Azacitidine (VEN/AZA) (S Pei et...KME-0584 exhibits superior potency and efficacy to gilteritinib in the FLT3-ITD (D835Y) xenograft model after QD oral dosing, with sufficient PK and oral bioavailability across multiple species to support QD or BID dosing in the clinic. KME-0584 does not inhibit any of the major or minor cytochrome P450 enzymes at anticipated clinical concentrations and early indication from ongoing GLP toxicology studies suggest that it could be safely administered in humans. A clinical study of KME-0584 in relapsed/refractory AML and HR-MDS is currently planned to start in 1H 2024.
Clinical
|
FLT3 (Fms-related tyrosine kinase 3) • SF3B1 (Splicing Factor 3b Subunit 1) • PDGFRB (Platelet Derived Growth Factor Receptor Beta) • U2AF1 (U2 Small Nuclear RNA Auxiliary Factor 1) • GLI2 (GLI Family Zinc Finger 2) • IRAK4 (Interleukin 1 Receptor Associated Kinase 4)
|
FLT3 mutation • FLT3 D835Y • FLT3 D835 • U2AF1 mutation • FLT3 wild-type
|
Venclexta (venetoclax) • Xospata (gilteritinib) • azacitidine • emavusertib (CA-4948)
2years
Clonal Medicine Targeting DNA Damage Response Eradicates AML (ASH 2023)
The "clonal attack" by DDR inhibitors shifts the paradigm of genotoxic therapies from those using non-discriminative cytotoxic drugs to those selectively attacking DDR vulnerabilities in AML clones with minimal harm to normal cells. Since clonal heterogeneity and DNA damage are hallmarks of cancer, the "clonal attack" may be broadly applicable to the quest for cancer cure.
PARP Biomarker
|
FLT3 (Fms-related tyrosine kinase 3) • NRAS (Neuroblastoma RAS viral oncogene homolog) • DNMT3A (DNA methyltransferase 1) • RUNX1 (RUNX Family Transcription Factor 1) • TET2 (Tet Methylcytosine Dioxygenase 2) • RAD51 (RAD51 Homolog A) • PML (Promyelocytic Leukemia) • CD34 (CD34 molecule) • PARP1 (Poly(ADP-Ribose) Polymerase 1) • PTPRC (Protein Tyrosine Phosphatase Receptor Type C) • RAD52 (RAD52 Homolog DNA Repair Protein)
|
FLT3-ITD mutation • FLT3 mutation • DNMT3A mutation • FLT3 D835Y • FLT3 D835 • NRAS G13 • NRAS G13R
2years
BGS-2456 Is a Novel Potent Covalent Inhibitor of FLT3 That Highly Discriminates Against KIT and Is Not Toxic Toward Normal Hematopoiesis in Vitro (ASH 2023)
While there are numerous examples of KIT TKIs that do not inhibit FLT3 (imatinib, avapritinib, dasatinib), to date, all clinically active FLT3 TKIs (quizartinib, gilteritinib, midostaurin, sorafenib) fail to spare KIT inhibition...Compared to FF-10101 and gilteritinib, BGS-2456 exhibited the least amount of hematologic toxicity, facilitating in vitro proliferation and differentiation of normal hematopoietic progenitor cells even at 100x EC50 concentration against Molm14 cells... This is the first description of a potent and exquisitely specific FLT3 inhibitor that spares KIT inhibition and displays no myelosuppression in vitro at >100x EC50 concentration. The potent inhibitory effects of BGS-2456 on both D835Y and F691L mutants support its promise as a best-in-class TKI for the treatment of FLT3-mutant AML. Efforts to molecularly dissect the basis of the high degree of selectivity of BGS-2456 are ongoing.
Preclinical
|
FLT3 (Fms-related tyrosine kinase 3) • ABL1 (ABL proto-oncogene 1) • PDGFRA (Platelet Derived Growth Factor Receptor Alpha) • CSF1R (Colony stimulating factor 1 receptor)
|
FLT3-ITD mutation • FLT3 mutation • KIT mutation • FLT3 D835Y • FLT3 F691L • FLT3 D835 • PDGFRA mutation • FLT3 D835V • FLT3 F691L + FLT3 D835V • FLT3-ITD mutation + FLT3 D835Y + FLT3 F691L
|
dasatinib • sorafenib • imatinib • Xospata (gilteritinib) • midostaurin • Vanflyta (quizartinib) • Ayvakit (avapritinib) • FF-10101 • BGS-2456
2years
T-Cell Receptor-Engineered T Cells Targeting FLT3-D835 Mutation-Derived Neoantigens in Acute Myeloid Leukemia (ASH 2023)
Taken together, we present novel neoantigens with promise as immunotherapy targets for AML and other hematologic malignancies with FLT3-D835 mutations. Future studies will evaluate the efficacy of Neo-D835H-specific TCR-engineered T-cell-based immunotherapy in vivo in patient-derived xenograft murine model and TCR-based therapeutic approaches targeting other FLT3-TKD mutations.
IO biomarker
|
FLT3 (Fms-related tyrosine kinase 3) • CD8 (cluster of differentiation 8) • HLA-A (Major Histocompatibility Complex, Class I, A) • IFNG (Interferon, gamma) • TRB (T Cell Receptor Beta Locus)
|
FLT3 mutation • FLT3-TKD mutation • FLT3 D835Y • FLT3 D835 • HLA-A*02:01 • HLA-A*02 • FLT3 D835H