In glioblastoma and colorectal tumor models, 225Ac-ch806 significantly inhibited tumor growth via induction of double-strand breaks, thereby constraining cancer cell proliferation while inducing cell cycle arrest and apoptosis. These findings underscore the potential clinical applicability of 225Ac-ch806 as a potential therapy for EGFR-expressing solid tumors.
Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. Analysis of samples yielded an area-under-the-curve (AUC) value of 0.99 and a low p-value of 0.000033, surpassing the performance of existing assays and markers.
Serclutamab talirine (Ser-T, formerly ABBV-321) is an antibody-drug conjugate consisting of an antibody (AM-1-ABT-806) directed against activated epidermal growth factor receptor (EGFR) and a pyrrolobenzodiazepine dimer. Ser-T monotherapy at doses up to 50 μg/kg initial dose, followed by 25 μg/kg Q4W demonstrated a tolerable safety profile with minimal antitumor activity observed in patients with glioblastoma. The glioblastoma dose-expansion cohort was closed due to a lack of efficacy (NCT03234712).
Our results demonstrates anti-tumor activity of EGFR806 CAR T cells against TNBC cells in vitro and in vivo. Given EGFR806 CAR T cells are currently undergoing clinical trials in primary brain tumor patients without obvious toxicity, our results are immediately actionable against the TNBC-BM patient population.
2 years ago
Journal
|
EGFR (Epidermal growth factor receptor)
|
EGFR806-specific CAR T-cell therapy • depatuxizumab (ABT-806)
To pave the way for future efficacy studies for the treatment of GBM with an intra-CSF administered ADC consisting of a conjugate of ABT-806 (or of one of its close analogs), we verified in vivo the binding of ABT-414 to GBM tumor cells implanted in the cisterna magna and collected toxicity data from both the central nervous system (CNS) and peripheral tissues. The current study supports further exploration of harnessing CSF microcirculation as an alternative to systemic delivery to achieve higher brain tissue exposure, while reducing previously reported ocular toxicity with ABT-414.
The adverse impact of increasing brain tumor size on the efficacy of antibody-drug conjugates (ADCs) was investigated preclinically then validated with clinical data. Both preclinical and clinical data showed intra-tumoral concentration and efficacy of Depatux-m inversely correlated with tumor size. This finding merit further investigation with pretreatment tumor volume as a predictor for response to ADCs, in both gliomas and other solid tumors.
ABT-806i allows for real-time imaging of EGFR conformational expression in tumors, has an acceptable radiation dosimetry and provides important additional information about antigen expression compared to standard approaches using archival tissue. Its role to assist in patient selection for EGFR-based therapeutics and investigate treatment resistance should be further investigated.
MM consistently demonstrated high expression of EGFR, with a subset of tumors showing conformational EGFR forms consistent with EGFR dysregulation, but withoutEGFR amplification or EGFR VIII mutation. wtEGFR expression did not influence survival. The impact of EGFR conformation on survival warrants further investigation.
mAb806 recognizes a conformationally exposed epitope of wild-type EGFR when it is overexpressed on tumor cells or in the presence of oncogenic mutations such as EGFRvIII...Unlike EGFR-specific cetuximab based CAR, EGFR-806CART cells did not kill EGFR wild type expressing fetal brain astrocytes and keratinocytes in vitro...Though our CART clinical trial for EGFRvIII positive recurrent GBM patients demonstrated CART therapy is safe and CART cells are able to successfully traffic to regions of active GBM, antigen loss and tumor heterogeneity resulted in limited therapeutic success. Broad specificity of EGFR806 CART cells to Amplified EGFR, EGFRvIII and EGFR-ECD mutants gives us the potential to clear various forms of EGFR. The enhanced anti-tumor efficacy by KIR based CAR in vivo setting provides us with additional therapeutic options for GBM.
Corroborating this hypothesis, our FACS, in vitro, and in vivo data demonstrate that entirely different ECD variants all converge to remove N-TR1 steric hindrance from the 806-epitope, which we show is allosterically coupled to an intermediate kinase and hallmarks increased oncogenicity. Finally, the detected extraintracellular coupling allows for synergistic cotargeting of the intermediate with mAb806 and inhibitors, which is proved herein.
We designed a CAR using a mAb806-based binder, which recognizes tumor-specific untethered EGFR...Unlike the nonselective Erbitux-based CAR, EGFR806-CAR T cells did not target primary human fetal brain astrocytes expressing wild-type EGFR, but showed a similar level of activity compared to Erbitux-CAR when the tumor-specific EGFRvIII transcript variant was overexpressed in astrocytes...In a novel human induced pluripotent stem cell (iPSC)-derived teratoma xenograft model, EGFR806-CAR T cells infiltrated but were not activated in EGFR+ epidermal cell nests as assessed by Granzyme B expression. These results indicate that EGFR806-CAR T cells effectively and selectively target EGFR-expressing tumor cells.
Tumor specific EGFR-targeted antibodies (ABT-806) and their antibody-drug conjugates (ADC:414;321), which eliminate side effects associated with systemic anti-EGFR treatments, represent promising alternative therapeutic approaches. Notably, this strategy avoids the toxicities associated with systemic chemotherapy and BCL-2/XL -inhibitors. These results also highlight the translational relevance of 321+263, within the context of EGFR-expressing TNBC.
Background: Depatux-M (ABT-414) is an antibody-drug-conjugate consisting of an antibody (ABT-806) bound to the toxin monomethylauristatin-F. Depatux-M in combination with TMZ showed a trend towards improved OS in EGFR amplified recurrent glioblastoma. This trend may be greater for subjects with an absence of EGFRvIII expression.
ABT-414 is a novel antibody-drug conjugate (ADC) of monomethyl auristatin F (MMAF), a microtubule destabilizing agent, and an anti-EGFR antibody (ABT-806). In summary, the majority of EGFR amplified lines tested are sensitive to ABT-414 in vitro and as flank tumors, but efficacy in treatment of orthotopic tumors is more limited. We hypothesize this effect may be related to heterogeneity of drug delivery.