Additionally, the ICB inhibitor BMS-202 synergizes with the PD-L1 aptamer-assisted nanoradiosensitizer to block the PD-L1 receptor, promoting T cell activation. Furthermore, this nanoradiosensitizer exhibits exceptional photothermal conversion efficiency, amplifying the ICD effect. The PD-L1-targeted nanoradiosensitizer effectively inhibits primary tumor growth and eliminates distant tumors, underscoring the potential of this strategy in optimizing both radioimmunotherapy and photothermal therapy.
Herein, we synthesized iRGD-modified pH-sensitive liposomal nanoparticles co-encapsulating lenvatinib (Len) and the small molecule PD-1/PD-L1 inhibitor BMS-202 (iRGD-lip@Len/BMS-202) to address issues related to inadequate tumor enrichment and distinct pharmacokinetics of these drugs. Collectively, the combination of Food and Drug Administration (FDA)-approved drugs with iRGD-modified liposomes presents a promising strategy for HCC treatment. Simultaneously, IVIM-MRI provides a non-invasive method to accurately predict the response to this nanodrug.
The compound MolPort-001-742-690 emerged as a promising pH-selective inhibitor, showing a significant affinity for PD-L1 in acidic conditions and lower toxicity compared to known inhibitors like BMS-202 and LP23. A detailed 1000 ns molecular dynamics simulation confirmed the stability of the inhibitor-PD-L1 complex under acidic conditions. This research highlights the potential of using in silico techniques to discover novel pH-selective inhibitors, which, after experimental validation, may enhance the precision and reduce the toxicity of immunotherapies, offering a transformative approach to cancer treatment.
BMS-202, a small-molecule PD-1/PD-L1 inhibitor that has a lower price, higher stability, lower immunogenicity, and higher tumor penetration ability compared with antibodies, was loaded together with pH-sensitive NaHCO3 inside hollow Fe3O4 NPs, followed by wrapping with macrophage membranes...A series of in vitro and in vivo assessments revealed that FBN@M could reprogram M2 TAMs into M1 TAMs and block the PD-1/PD-L1 pathway, which eventually induced T cell activation and the secretion of TNF-α and IFN-γ to kill the tumor cells. FBN@M has shown a significant immunotherapeutic efficacy for tumor treatment.
Here, a novel PD-L1 proteolysis-targeting chimera (PROTAC) library was designed and synthesized utilizing the PD-L1 inhibitor BMS202 and the E3 ligand PG as foundational components...Thus, these results suggest that PA8 could be a novel strategy for cancer immunotherapy in the 4T1 tumor model. Although PA8 exhibits weaker degradation activity in some human cancer cells, it still provides a certain basis for further research on PD-L1 PROTAC.
To prove this idea, DOX and BMS-202 (a PD-L1 blocker) were loaded to black phosphorus (BP) nanoparticles after dosage titration to yield the BMS-202/DOX@BP composites that rapidly disintegrated and released drug cargo upon mild photothermal heating at 40 °C. The synergetic actions involved highlight the value of TAM and the significance of modulating tumor cell-TAM cross-talk in tumor therapy. Photothermia-responsive BP provides an efficient platform to translate this strategy into targeted, efficacious tumor therapy.
Mechanistically, it reduces the expression of PD-L1 on the surface of GBM cells and interrupts the PD-L1-AKT-BCAT1 axis independent of mTOR signaling. Taken together, we conclude that BMS-202 is a promising therapeutic candidate for patients with GBM by remodeling their cell metabolism regimen, thus leading to better survival.
Meanwhile, the liberated BMS202 blocks immune checkpoints on tumor cells and T cells, activating the recruited T cells and ultimately eradicating the tumors. This innovative strategy represents a comprehensive approach to fine-tune the TME, significantly amplifying the effectiveness of cancer immunotherapy by exploiting the TRPV1 pathway and enabling in situ control of immunomodulation within the TME.
Further mechanistic analysis confirmed that BMS-202 antagonizes UV-induced PD-L1 expression both at the mRNA and protein levels in SKH-1 epidermis. These data suggest that topical pharmacological PD-L1 antagonism using BMS-202 shows promise for skin protection against photodamage.
PET imaging with [Ga]Ga-D-pep-PMED, a small-molecule radiotracer, is a promising tool for evaluating PD-L1 expression and quantifying the target blockade of PD-L1 to assist in the development of effective therapeutic regimens.
The hydrogel was created by sodium alginate (SA) as the gelator, where linagliptin particles and BMS-202 particles were present in hydrogel micropores. Therefore, the hydrogel in combination with CXCL10 demonstrated powerful cancer immunotherapy against primary and distant tumors, along with efficient inhibition of lung metastasis. Our study not only offers a potent platform against tumors, but also provides a conceptually new approach to reinforce cancer immunotherapy.
Peripheral blood mononuclear cells (PBMC) were collected from ablated and nonablated woodchucks, labeled with carboxyfluorescein succinimidyl ester (CFSE) and cultured with immune-modulating drugs, including a small PD-L1 antagonist molecule (BMS-202) and three TLR7/8 agonists (DSR 6434, GS-9620, gardiquimod). Partial cryoablation augmented immune effects in both treated and remote untreated tumor microenvironments, as well as systemically, in woodchucks with HCC. Characterization of these mechanisms may enhance development of novel drug-device combinations for treatment of HCC.
The pH-responsive polymer equipped with the cell membrane anchoring peptide RKC is used as the carrier and further encapsulated with the near-infrared-activated semiconductor polymer photosensitizer YBS and a PD-1/PD-L1 complex small molecule inhibitor BMS-202...In vitro and in vivo studies have shown that this dual-pronged therapy stimulates a powerful antitumor immune response to suppress primary tumor progression and evokes long-term immune memory to inhibit tumor relapse and metastasis. This work provides an effective self-synergistic platform for PCa immunotherapy and a new idea for developing more biocompatible photo-controlled pyroptosis inducers.
1 year ago
Journal
|
PD-L1 (Programmed death ligand 1) • PD-1 (Programmed cell death 1)
Upon evaluation of their immunological activities, the two compounds induced higher cytokines levels (IL-2, IL-6, and INF-γ) relative to BMS-202, 72 h post treatment of PBMCs of HCC patients. Thus, the discovered hits represent potential leads for the development of novel classes targeting the PD-L1 receptor as anti-hepatocellular carcinoma agents.
1 year ago
Journal • Checkpoint inhibition
|
PD-L1 (Programmed death ligand 1) • PD-1 (Programmed cell death 1) • IL6 (Interleukin 6) • IL2 (Interleukin 2)
Exposing melanoma cells to BMS202-NDs led to a stronger than normal interaction between the hPBMCs and the melanoma cells, with significant anti-proliferative effects. We therefore conclude that melanoma therapy has the potential to be enhanced by non-classical T-cell Immune responses via immune checkpoint inhibitors delivered by nanodiamonds-based nanoparticles.
Our results indicate that early intervention against PD-L1 expression/activity could be a viable target for skin cancer photochemoprevention. Topical application of small molecule PD-L1 inhibitors such as BMS-202 may provide novel treatment options for populations at high risk for cSCC.