^
over1year
Design of rigid protein-protein interaction inhibitors enables targeting of undruggable Mcl-1. (PubMed, Proc Natl Acad Sci U S A)
Despite being previously considered undruggable, seven small-molecule Mcl-1 inhibitors have recently entered clinical trials. Here, we report the crystal structure of the clinical-stage inhibitor AMG-176 bound to Mcl-1 and analyze its interaction along with clinical inhibitors AZD5991 and S64315...Nuclear Magnetic Resonance (NMR)-based free ligand conformer analysis demonstrates that such unprecedented induced fit is uniquely achieved by designing highly rigid inhibitors, preorganized in their bioactive conformation. By elucidating key chemistry design principles, this work provides a roadmap for targeting the largely untapped PPI class more successfully.
Journal
|
BCL2 (B-cell CLL/lymphoma 2)
|
AZD5991 • tapotoclax (AMG 176) • MIK665 • murizatoclax (AMG 397)
2years
NA1-115-7, from Zygogynum pancheri, is a new selective MCL-1 inhibitor inducing the apoptosis of hematological cancer cells but non-toxic to normal blood cells or cardiomyocytes. (PubMed, Biomed Pharmacother)
Synthetic inhibitors targeting these proteins have been developed, and some hematological malignancies are now widely treated with a BCL-2 inhibitor (venetoclax)...Six MCL-1 inhibitors (S64315, AZD-5991, AMG-176, AMG-397, ABBV-467 and PRT1419) have been evaluated in clinical trials since 2016, but some were affected by safety issues and none are currently used clinically...Importantly, a similar treatment with NA1-115-7 was not toxic to erythrocytes, peripheral blood mononuclear cells, platelets, or cardiomyocytes. These results highlight the potential of natural products for use as specific BH3 mimetics non-toxic to normal cells, and they suggest that NA1-115-7 may be a promising tool for use in cancer treatment.
Journal • IO biomarker
|
BCL2L1 (BCL2-like 1)
|
MCL1 expression
|
Venclexta (venetoclax) • AZD5991 • tapotoclax (AMG 176) • PRT1419 • ABBV-467 • MIK665 • murizatoclax (AMG 397)
3years
[VIRTUAL] Beyond BCL-2 Inhibition in Acute Myeloid Leukemia: Other Approaches to Leverage the Apoptotic Pathway (SOHO 2021)
However, 10–50% of newly diagnosed patients with AML may not respond to venetoclax and HMA or LDAC, and 3–15% patients may not respond to venetoclax with intensive or non-intensive chemotherapy.1–6 In addition, up to 40% of responding patients may relapse with low rates of response of 20% to salvage therapy and poor overall survival of 2 months after relapse.7 Clinical and biological factors associated with primary and acquired resistance to venetoclax include secondary AML, monocytic differentiation, complex cytogenetics, mutations in TP53, BAX, dependence on other anti- apoptotic proteins, altered metabolism of nicotinamide, fatty acids, and oxidative phosphortylation.3,8–14 Several novel inhibitors of BCL-2 are currently being tested in clinic, including BGB 11417, APG-2575, LP-108 and others...There is strong pre-clinical rationale for targeting MCL-1 alone as well as in conjunction with BCL-2 inhibition in AML.15 Recently several selective and highly potent MCL-1 inhibitors have entered pre-clinical and clinical development including S63845, AZD5991, AMG397, and others. Questions remain regarding the therapeutic window of these inhibitors given the important physiologic role of MCL-1 in vital organs and early reports of cardiac adverse events from the AMG176 phase 1 trial.15,16 Multiple pre-clinical studies have expectedly shown synergism between BCL- 2 and MCL-1 inhibition making it a promising path for clinical development of these agents.17,18 Multifactorial challenges in design of specific MCL-1 inhibitors also led to interest in compounds which downregulate MCL-1 expression. Cyclin dependent kinase (CDK) inhibitors including alvocidib, dinaciclib, voruciclib are in various stages of evaluation. Although addition of alvocidib to intensive chemotherapy improved response rates but failed to improve event-free or overall survival.19 Novel CDK inhibitors are currently in early phase trials including AZD4573, CYC065, TG02-101, and others. Inhibition of Nedd8 activating enzyme has complex repercussions for the intrinsic apoptotic pathway with eventual increase in Noxa leading to MCL-1 neutralization.20 Pevonedistat has shown promising early results in AML and myelodysplastic syndrome and is being investigated multiple clinical trials for solid tumors as well. BCL-xL Inhibition Another anti-apoptotic protein BCL-xL had been long recognized as a potential therapeutic target in AML, in particular AML from preceding MPN and AML recurrent post venetoclax failure, but toxicity of earlier inhibitors precluded clinical development.21–23 Recently, AZD0466, a dual BCL-2/xL inhibitor with a favorable therapeutic index and robust activity has been developed and is undergoing pre-clinical development and planned for phase iin hematological malignancies.24 Targeting the Extrinsic Apoptosis Pathway Inhibitor of apoptosis protein (IAP) inhibition: X-linked IAP (XIAP), cellular IAP (cIAP) and survivin have been of long- standing interest in AML. Prior clinical trials with XIAP inhibitor AEG35156, cIAP targeting agent birinapant, and survivin targeting agent LY2181308 have not succeeded in clinc.16,25 ASTX660 is a dual antagonist of XIAP and cIAP which is currently being investigated in phase 1/2 trials in solid tumors and in combination with HMA in relapsed or refractory AML.26,27 TRAIL Agonism Agonists of the TNF-related apoptosis-inducing ligand (TRAIL) receptors have been tested in AML with low response rates.28,29 Previous agents have had limited success in part due to suboptimal clustering of TRAIL receptors.30 Novel antibodies against TRAILR1 and TRAILR2 including an IgM molecule IGM-8444, a tetravalent compound INBRX-109, and HLX56 are currently in phase 1 trials and preclinical data suggests potential synergy with venetoclax.31 FLIP Inhibition FLICE-like inhibitor protein (FLIP or CFLAR) is a key regulator of the death-inducing signaling complex (DISC) involved in the extrinsic apoptotic pathway...This can be augmented by inhibiting p53 degradation via MDM2, which is often upregulated in AML.34 Idasanutlin in combination with venetoclax showed anti- Figure 1 leukemic activity in the dose finding stage in R/R AML.35 Several other inhibitors of MDM2 and dual MDM2/X inhibitors are currently in various stages of pre-clinical and clinical development including HDM-201, KRT-232, BI-9078282, and others.34 Conclusions Opportunities to target the apoptosis machinery in AML has considerably evolved in the last decade. While venetoclax heralded a paradigm shift for patients, we are now faced with challenges in patients who relapse or remain refractory. We have novel clinical stage compounds to methodologically target different facets of the apoptotic pathway and optimize novel combinations with the goal to improve the cure rates in AML patients.
IO biomarker
|
MDM2 (E3 ubiquitin protein ligase) • BCL2L1 (BCL2-like 1) • BIRC5 (Baculoviral IAP repeat containing 5) • TNFRSF10A (TNF Receptor Superfamily Member 10a) • XIAP (X-Linked Inhibitor Of Apoptosis) • CFLAR (CASP8 and FADD-like apoptosis regulator) • TNFRSF10B (TNF Receptor Superfamily Member 10b)
|
TP53 mutation • MCL1 expression
|
Venclexta (venetoclax) • navtemadlin (KRT-232) • S63845 • pevonedistat (MLN4924) • idasanutlin (RG7388) • brigimadlin (BI 907828) • alvocidib (DSP-2033) • lisaftoclax (APG-2575) • fadraciclib (CYC065) • AZD5991 • birinapant (IGM-9427) • dinaciclib (MK-7965) • siremadlin (HDM201) • tapotoclax (AMG 176) • voruciclib (ME-522) • sonrotoclax (BGB-11417) • zotiraciclib (TG02) • ozekibart (INBRX-109) • tolinapant (ASTX660) • zemirciclib (AZD4573) • AZD0466 • GEM 640 • HLX56 • LP-108 • aplitabart (IGM-8444) • gataparsen (LY2181308) • murizatoclax (AMG 397)
over4years
[VIRTUAL] Discovery and preclinical evaluation of AMG 397, a potent, selective and orally bioavailable MCL1 inhibitor (AACR-II 2020)
Several MCL1 inhibitors have entered clinical trials including AMG 176, currently in Phase I clinical development for hematologic malignancies. AMG 397 was also tested in the MOLM-13 orthotopic model of AML where twice weekly administration at 10, 30 and 60 mg/kg achieved 47% tumor growth inhibition (TGI), 99% TGI and 75% regression respectively. Combination of AMG 397 at 10 mg/kg twice weekly and 50 mg/kg of venetoclax daily achieved 45% regression in the same model.
Preclinical
|
BCL2 (B-cell CLL/lymphoma 2) • CASP3 (Caspase 3)
|
Venclexta (venetoclax) • tapotoclax (AMG 176) • murizatoclax (AMG 397)