ALK-5 inhibitors, such as SB505154, GW6604, SD208, and LY2157299, have recently been reported to inhibit ALK-5 autophosphorylation and induce the transcription of matrix genes. From a lead-like subset of purchasable compounds, five molecules were identified as putative ALK-5 inhibitors. In addition, molecular dynamics and binding free energy calculations combined with pharmacokinetics and toxicity profiling demonstrated the suitability of these compounds to be further investigated as novel ALK-5 inhibitors.
Using in vivo μCT we show substantial and rapid bone lesion repair (and prevention) driven by SD-208 (TGFβ receptor I kinase inhibitor) and chemotherapy (bortezomib and lenalidomide) in mice with human U266-GFP-luc myeloma. We also discovered that SD-208 promoted osteoblastic differentiation (and overcame the TGF?-induced block in osteoblastogenesis) in myeloma patient bone marrow stromal cells in vitro, comparable to normal donors. The improved bone quality and fracture-resistance with SD-208 provides incentive for clinical translation to improve myeloma patient quality of life by reducing fracture risk and fatality.
We demonstrate the TGF-β suppresses the antitumor function of ROR1-CAR T-cells against TNBC in preclinical models. Our study supports the continued preclinical development and the clinical evaluation of combination treatments that shield CAR T-cells from TGF-β, as exemplified by the TGF-β-receptor kinase inhibitor SD-208 in this study.
over 4 years ago
Journal • CAR T-Cell Therapy • PD(L)-1 Biomarker
|
CD8 (cluster of differentiation 8) • PD-1 (Programmed cell death 1) • SMAD4 (SMAD family member 4)