Prospective optimization of estrogen receptor degradation yields ER ligands with variable capacities for ER transcriptional suppression (SABCS 2018)
However, the full clinical potential of fulvestrant is believed to be limited by poor bioavailability, spurring attempts to generate ligands capable of driving ER degradation but with improved drug-like properties.Here, we evaluate three ER ligand clinical candidates that recently emerged from prospective optimization of ER degradation – GDC-0810, AZD9496 and GDC-0927 - and show that they display distinct mechanistic features. This class of “always mobile” ER variants promotes an antagonist-to-agonist transcriptional switch for fulvestrant and GDC-0927, and simultaneously prevents ER degradation by these molecules, implying that ER immobilization is a key functional determinant of robust transcriptional suppression.We thus propose that ER degradation is not a driver of full ER antagonism, but rather a downstream consequence of ER immobilization, occurring after a suppressive phenotype has been established at chromatin. We additionally argue that evaluating the transcriptional output of candidate ER therapeutics, both pre-clinically and clinically, will be critical for the identification of ER ligands with best-in-class potential.