Moreover, EphA2 inhibitors dasatinib and ALW II-41-27 remarkably suppress the progression of tumors expressing PLEKHA1-TACC2 in vivo. Functionally, PLEKHA1-TACC2 fusion and Trp53 deletion significantly increases tumor incidence, tumor multiplicity, and mouse mortality in transgenic ESCC mouse model, which could be suppressed by regorafenib, a EphA2 inhibitor approved by FDA in solid tumors. Together, our data indicate that PLEKHA1-TACC2 fusion protein has oncogenic activities and serves as a promising prognosis marker and therapeutic target.
NGEF facilitates the infiltration of nerve and the growth of cancer cells in lung adenocarcinoma through the Ephrin-A3/EphA2 pathway, suggesting that NGEF is a promising target for disrupting interactions between nerves and tumors. Biomaterials that focus on NGEF are anticipated to be a potential treatment option for lung cancer.
9 months ago
Journal
|
EFNA3 (Ephrin A3) • KIF4A (Kinesin Family Member 4A) • NGEF (Neuronal Guanine Nucleotide Exchange Factor) • PABPC1 (Poly(A) Binding Protein Cytoplasmic 1)
Our first pan-cancer study of EphA2 provides insight into the prognostic and immunological roles of EphA2 in different tumours, suggesting that EphA2 might be a potential biomarker for poor prognosis and immune infiltration in cancer.
We also found that EphA2 can form liquid-liquid phase separation condensates on cell membrane, which can be disrupted by ALW-II-41-27, an inhibitor of EphA2. In addition, we found that EphA2 expression in colorectal cancer was positively correlated with the expression of ferroptosis-related genes and the infiltration of multiple immune cells. These findings suggest that EphA2 is a novel membrane protein with phase separation ability and is associated with ferroptosis and immune cell infiltration, which further suggests that malignant progression of colorectal cancer may be inhibited by suppressing the phase separation ability of EphA2.
Furthermore, the EphA2 inhibitor ALW-II-41-27 could effectively reduce EphA2 pS897 and tumor cell stemness in vitro and significantly enhance the sensitivity of xenografts to the chemotherapeutic drugs PTX and DDP in vivo. Clinically, tumor samples from breast patients with less response to neoadjuvant chemotherapy showed a high level of EphA2 pS897 expression. In conclusion, KLF5-EphA2 promotes stemness and drug resistance in BLBC and could be a potential target for the treatment of BLBC.
Taken together, the present findings revealed that ALW-II-41-27 inhibited CC cell proliferation, migration and invasion by blocking the RhoA/ROCK pathway. These findings provide further insight into the mechanism of CC progression and significant information for the development of potential therapeutic targets for CC.
over 3 years ago
Journal
|
RHOA (Ras homolog family member A) • EPHA2 (EPH receptor A2)
Indeed, we observed a significant dose-dependent antitumor effect of the EphA2-inhibitor ALW-II-41-27 in patient-derived in vitro models. In conclusion, EphA2 targeting represents a promising novel therapeutic strategy against bone sarcomas.
The EphA2 blocking studies were performed using antibody, small-molecule inhibitor ALW-II-41-27, and the CRISPR/Cas9...Specifically, we found that blocking of EphA2 expression resulted in significant inhibition of endometrial tumor killing mediated by Vδ1 γδ T cells. These results suggest that EphA2 is involved in tumor cell lysis and contributes to susceptibility to Vδ1 γδ T cells cytotoxic reactivity.
Furthermore, an ATP-competitive EPHA2 RTK inhibitor (ALW-II-41-27, ALW) reduced EPHA2 Y772 phosphorylation and increased the expression of E-cadherin in CNE2-IR cells...In conclusion, phosphoproteomic approach allowed us to link tyrosine kinases signaling with radioresistance in NPC. Further studies are necessary to delineate the molecular function of EPHA2/E-cadherin signaling in radioresistant NPC and to explore rational combination therapy and its underlying mechanism.
Furthermore, pharmacological inhibition of EphA2 through the small molecule inhibitor ALW-II-41-27 reduced the proliferation of sunitinib-resistant tumor cells, suppressed tumor growth in vivo, and restored the sensitivity of sunitinib-resistant tumor cells to sunitinib in vitro and in vivo. Mechanistically, YB1 increases the protein levels of EphA2 by maintaining the protein stability of EphA2 through inhibition of the proteasomal degradation pathway. Collectively, our findings provide the theoretical rationale that ccRCC metastasis and RTK-directed therapeutic resistance could be prospectively and purposefully targeted.
Moreover, we observed that EphA2 tyrosine kinase inhibitor ALW-II-41-27 inhibited pY772-EphA2 and EphA2-Y772A decreased the inhibitory effect of ALW-II-41-27 on NPC cell proliferation. Collectively, our results demonstrate that pY772-EphA2 is responsible for EphA2-dependent NPC cell growth in vitro and in vivo by activating Shp2/Erk-1/2 signaling pathway, and is a pharmacologic target of ALW-II-41-27, suggesting that pY772-EphA2 can serve as a therapeutic target in NPC and perhaps in other cancers.