Her favorable response to conventional therapy underscores the importance of molecular phenotyping in the treatment of this disease. The continued use of NGS to gather relevant molecular data is crucial for further understanding the molecular phenotype and prognosis of such atypical ALL cases.
In conclusion, the -700 to 0 bp region is the key region of the JUN promoter, with WT1 inhibiting JUN transcription. The results of the study not only provide ideas for exploring the regulatory mechanism of JUN in chicken SSCs, but also lay an important foundation for the study of avian SSCs.
We confirmed that MRD status prior to alloHSCT is a strong prognostic factor for OS, DFS and CIR. Combining MFC and molecular-PCR techniques to assess MRD seems primordial as inter-method discordance can be consequential.
WT1 expression levels may serve as a valuable ancillary marker in MRD assessment and relapse prediction post-allo-SCT in AML patients, particularly for those lacking specific fusion genes or mutations. However, further large-scale, controlled studies are needed to standardize WT1 MRD assays and establish clear guidelines for their clinical application.
WT1MRD response post-intensification I serves as an independent prognostic factor for survival in pediatric AML. Integration of WT1 and MFC-based MRD results enhances the reliability of MRD-based prognostic stratification, particularly in patients lacking specific leukemic markers, thereby influencing treatment strategies.
Interestingly, this overexpression was observed in all molecular subtypes of invasive breast cancer, underscoring the significance of WT1 as a potential target in all these subtypes. The observed WT1 down-expression in a few cases of invasive breast cancer, associated with better survival outcomes, may correspond to the down-regulation of a particular WT1-KTS (-) isoform: the WT1 A isoform (EX5-/KTS-). The co-expression of this WT1 oncogenic isoform with a regulated WT1- tumor suppressor isoform, such as the major WT1 F isoform (EX5-/KTS +), could also explain such survival outcomes. Due to its capacity to adopt dual roles, it becomes imperative to conduct individual molecular expression profiling of the WT1 gene. Such an approach holds great promise in the development of personalized treatment strategies for breast cancer.
Furthermore, CCND2 elevation partially offsets the impacts of miR-186-5p elevation on Aβ1-42-stimulated cell proliferation as well as apoptosis mediated with WT1-AS up-regulation. Our results indicated that up-regulation of lncRNA WT1-AS ameliorated Aβ-stimulated neuronal damage through modulating miR-186-5p/CCND2 axis, offering a novel direction for AD therapy.
In B-other patients, WT1 overexpression at diagnosis predicted an inferior prognosis. The WT1 gene may serve as a biomarker for monitoring residual disease in the B-other population, especially in children in the standard-risk group.
These results confirm that qPCR targeting NPM1 mutations or fusion transcripts are superior in MRD testing. In the absence of such targets, ddPCR is a promising alternative demonstrating (a) high applicability, (b) high sensitivity, and (c) zero false positive MRD relapses in non-relapsing patients.
Finally, we show that ESK-1, a T cell receptor-like monoclonal antibody that recognizes WT1 peptides presented on MHC HLA-A0201, shows increased binding to endothelial cells after KSHV infection or induction of vFLIP expression. We propose that oncogenic isoforms of WT1 are upregulated by KSHV to promote tumorigenesis and that immunotherapy directed against WT1 may be an approach for KS treatment.
Idarubicin + Cytarabine (IA) regimen could reduce the expression level of WT1 after treatment, and Allo-HSCT played an important role in improving the prognosis of patients with WT1 high expression and patients with WT1 negativity. Different clinical background should be taken into consideration when we judge the prognosis and therapeutic effect of patients with WT1 mutations. In addition, WT1 may be an optional MRD marker, which needs regular monitoring.