Aptamers that specifically bind to the JX-594 strain of the vaccinia virus were developed earlier. The synergistic effect of the VV-GMCSF-Lact combination with the aptamers in the presence of serum was investigated using human glioblastoma cells. This proposed approach allowed us to conduct a preliminary screening of sequences using in silico modeling and experimental methods, and identified potential candidates that are capable of shielding VV-GMCSF-Lact from virus-neutralizing antibodies.
Testing these regimens in the U87 MG xenograft glioblastoma model confirmed this effect, as assessed by tumor growth inhibition index and histological analysis. Moreover, VV-GMCSF-Lact as monotherapy is more effective against U87 MG glioblastoma xenografts comparing temozolomide.
Thus, NV14t_56 has the ability to inhibit virus aggregation, allowing VV-GMCSF-Lact to maintain its effectiveness throughout the storage period and subsequent use. When employing aptamers as protective agents for oncolytic viruses, the presence of neutralizing antibodies should be taken into account.
Genes whose expression correlates with the sensitivity of cells to the virus are important for increasing the effectiveness of cancer virotherapy. Overall, the results highlight molecular markers, biological pathways, and gene networks influencing the response of glioma cells to VV-GMCSF-Lact.
Hence, we suggest that the sensitivity of glioblastoma cells to the oncotoxic effect of VV-GMCSF-Lact is determined by the nature and extent of the disturbances in cell death regulation in various cultures. Further investigation of the factors affecting glioblastoma resistance to virotherapy will test this hypothesis and identify targets for antitumor therapy, combined with VV-GMCSF-Lact.