EPE components reduced TYMS expression by occupation of SP1 motifs on the tyms promoter and reversed the EMT phenotype of invasive MPM cells. Further in-depth analysis of the molecular docking of polyphenol compounds with SP1 regulatory motifs is required.
Our study indicated a novel and effective regulatory capacity of TYMS in the cell proliferation of ESCC by relieving oxidative stress through activating expression of Nrf2 and Nrf2-dependent antioxidant enzymes genes. These properties make TYMS and Nrf2 as appealing targets for ESCC clinical chemotherapy.
Mechanistically, we confirm the compound is a multifunctional non-classical antifolate, and using a series of analogues, we identify structural features allowing direct TYMS inhibition while also maintaining the ability to inhibit dihydrofolate reductase (DHFR). Collectively, this work identifies new non-classical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile highlighting potential for enhanced cancer therapy.
Mechanistically, we confirm the compound and its analogues are a multifunctional non-classical antifolate, and we identify structural features allowing direct TYMS inhibition while also maintaining the ability to inhibit dihydrofolate reductase (DHFR). Collectively, this work identifies new non-classical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile highlighting potential for enhanced cancer therapy.
Thymidylate synthase (TYMS) is the crucial enzymatic precursor for DNA biosynthesis and, therefore, the critical target for numerous types of chemotherapy, including the most frequently applied agent in colon cancer treatment 5-fluorouracil (5-FU)...Overall, our study showed a correlation between TYMS level and invasion ability in colon cancer cells and, above all, a crucial role of TYMS in the EMT regulation. We postulate that chemotherapeutics that decrease or inhibit TYMS expression could increase the effectiveness of the therapy in patients with colon cancer, especially in the metastatic stage.
In conclusion, these results reveal that TYMS plays a very important role in the prognosis and progression of cervical cancer, and has the potential to be thought of as cervical cancer biomarkers. At the same time, miR-197-3p/TYMS axis can regulate the deterioration of cervical cancer cells, which lays a foundation for the molecular diagnosis and treatment of cervical cancer.
The results of chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assays suggested that H3K27 acetylation in the 5'-UTR of TYMS may promote its expression in drug-resistant cells. Our findings indicate that the intracellular levels of dTMP are potential biomarkers for the effective treatment of patients with MPM and suggest the importance of regulatory mechanisms of TYMS expression in the disease.
Colon cancer patients with MSI show resistance to 5-Fluorouracil (5-FU) but sensitivity to immunosuppressive checkpoint inhibitors (ICIs)...The substitutions and location of somatic mutations in different genes were at variance between MSS and MSI patients. In conclusion, our research determined mechanisms of MSI associated treatment response, and may provide potential value for improving the survival of colon cancer patients.