The combination of BIBR1532 with antineoplastic drugs (cyclophosphamide or fludarabine) significantly reduced xenografted cells' proliferation rate compared to monotherapy in the zebrafish xenograft model. Overall, these findings indicate that short-term inhibition of TERT impairs cell growth through the downregulation of MYC via NF-κB signalling and supports the use of TERT inhibitors in combination with antineoplastic drugs as an efficient anticancer strategy.
Collectively, our results indicate that simultaneously targeting TERT and ASCT2 provides a novel therapeutic opportunity for GBMs and that hyperpolarized [1-13C]-alanine serves as a companion agent for imaging early response to therapy. Our findings pave the way for precision therapy and response assessment for GBM patients.
3 years ago
Preclinical
|
TERT (Telomerase Reverse Transcriptase) • SLC1A5 (Solute Carrier Family 1 Member 5)
Relative to Caucasian non-responders to endocrine therapy, B/AA non-responders show suppressed expression of a signature gene set on which biological processes including signaling by interleukins, circadian clock, regulation of lipid metabolism by PPARα, FOXO-mediated transcription, and regulation of TP53 degradation are over-represented. Thus, we identify molecular expression patterns suggesting diminished response to oxidative stress, changes in regulation of tumor suppressors/facilitators, and enhanced immortalization in B/AA patients are likely important in defining the more aggressive molecular tumor phenotype reported in B/AA patients.
Our results provide a comprehensive understanding of the oncogenic mechanism of lncRNA SNHG1 in breast cancer. Importantly, we identified a novel E2F1-SNHG1-miR-18b-5p-TERT axis, which may be a potential therapeutic target for breast cancer. Our results also provided a potential treatment for breast cancer when knockdown SNHG1 and TERT inhibitor administration simultaneously.