^
Contact us  to learn more about
our Premium Content:  News alerts, weekly reports and conference planners
BIOMARKER:

NSD1 mutation

i
Other names: NSD1, Nuclear Receptor Binding SET Domain Protein 1, ARA267, KMT3B, Histone-Lysine N-Methyltransferase H3 Lysine-36 Specific, Nuclear Receptor-Binding SET Domain-Containing Protein 1, Androgen Receptor-Associated Protein Of 267 KDa, Androgen Receptor Coactivator 267 KDa Protein, NR-Binding SET Domain-Containing Protein, Lysine N-Methyltransferase 3B, H3-K36-HMTase, Histone-Lysine N-Methyltransferase H3 Lysine-36 And H4 Lysine-20 Specific, Truncated Nuclear Receptor Binding SET Domain Protein 1,
Entrez ID:
Related biomarkers:
6ms
Characteristics of FLT3-ITD and Efficacy of Sorafenib Treatment in Pediatric AML: A Report from AML-BFM Study Group (ASH 2023)
Conclusions Our preliminary analysis implicates that although addition of sorafenib to the intensive chemotherapy of children and adolescence with FLT3-ITD positive AML, did not improve the survival outcomes in all patients; specific genetic subgroups might benefit from this treatment. These results must be validated in bigger cohorts of patients with longer follow-ups.
Clinical
|
FLT3 (Fms-related tyrosine kinase 3) • WT1 (WT1 Transcription Factor) • NUP98 (Nucleoporin 98 And 96 Precursor 2) • NSD1 (Nuclear Receptor Binding SET Domain Protein 1)
|
FLT3-ITD mutation • WT1 mutation • NSD1 mutation
|
sorafenib
8ms
Targeting KDM2A Enhances T Cell Infiltration in NSD1-Deficient Head and Neck Squamous Cell Carcinoma. (PubMed, Cancer Res)
Importantly, KDM2A suppression decreased growth of NSD1-deficient tumors in immunocompetent, but not in immunodeficient, mice. Together, these data indicate that KDM2A is an immunotherapeutic target for overcoming immune exclusion in HNSCC.
Journal • PD(L)-1 Biomarker • IO biomarker
|
CXCL10 (Chemokine (C-X-C motif) ligand 10) • CXCL9 (Chemokine (C-X-C motif) ligand 9) • NSD1 (Nuclear Receptor Binding SET Domain Protein 1)
|
NSD1 mutation
10ms
The T1150A cancer mutant of the protein lysine dimethyltransferase NSD2 can introduce H3K36 trimethylation. (PubMed, J Biol Chem)
Simulations with NSD2 revealed that H3K36me3 formation is possible due to an enlarged active site pocket of T1150A and loss of direct contacts of T1150 to critical residues which regulate the product specificity of NSD2. Bioinformatic analyses of published data suggested that the generation of H3K36me3 by NSD2 T1150A could alter gene regulation by antagonizing H3K27me3 finally leading to the upregulation of oncogenes.
Journal
|
NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • NSD2 (Nuclear Receptor Binding SET Domain Protein 2)
|
NSD1 mutation
1year
NSD1/2 histone methyltransferases regulate cell growth in HPV-negative head and neck squamous cell carcinoma (HNSCC) (AACR 2023)
Taken together, while this data supports the suggestion that NSD histone methyltransferases have multiple downstream targets, the underlying mechanism remain to be investigated in more detail. Further, NSD proteins are attractive targets for drug development for improving treatment strategies for HNSCC.
Epigenetic controller
|
NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • NSD3 (Nuclear Receptor Binding SET Domain Protein 3) • E2F2 (E2F Transcription Factor 2) • NSD2 (Nuclear Receptor Binding SET Domain Protein 2)
|
NSD1 mutation
1year
Different treatment response in several head and neck squamous cell carcinoma (HNSCC) cell lines reflecting underlying genomic and molecular signatures (AACR 2023)
PI3K/mTOR dual inhibition, PI3Kalpha inhibitor, AKT inhibitor, FGFR inhibitor, ALK/IGF1R inhibitor, CDK4/6 inhibitor, BCl2 inhibitor, WEE1 inhibitor, ATR inhibitor, DNA-PK inhibitor, AT2AR inhibitor, Mcl-1 inhibitor, MEK1/2 inhibitor, EZH2 inhibitor, HDAC inhibitor, CDK9 inhibitor, DNMT3 inhibitor, BRD4/BET inhibitor, JAK2 inhibitor, CXCR4 inhibitor, FAK inhibitor, BTK inhibitor, eribulin, & VEGFR2/ PDGFR/FGFR or VEGFR2/c-MET/Axl triple blockage might be effective on TW2.6 and reverse treatment refractoriness, maybe through the inhibition of mesenchymal transformation, pRB, & PI3K/AKT /mTOR signaling and the modulation of stemness & PD1/PDL1 pathway...All cell lines will be tried to be categorized as TCGA subtypes for the reference of future drug combinations.Cell linesSCC25KBSASCAL27FaDuSCC15SCC9SCC4TW2.6Differ- entiationWellPoorPoorPoorPoorWellWellWellWell, but rapidly replicated, with high hyper-diploidy & complex rearrangementsHPV statusHPV 16/18HPV18--HPV 16/18--HPV 6/11-EGFR statusMediumLowHighHighMediumHighLowMedium to highUnknownDocetaxel sensitivity+++++++++++++ to +++++-+Cisplatin sensitivity+++++++++++++- to +-- to +5-FU sensitivity+++++++++++-+ to ++-- to +Afatinib sensitivity+++- to +-+++++ to +++++++++-Polo-like kinase Inhibitor sensitivity+++++++++++++ to +++- to +-- to +VEGFR2 Inhibitor sensitivity----+++++--++PI3K/ mTOR inhibitorAll cell lines sensitiveCDK4/6 Inhibitor response+++- to ++++++ to +++++++++++++ to +++Western blotsWeak p-AKT & VEGF-A, mild PDL1 and BMI-1, Gli-1(+)Weak p-AKT, mild PDL1 and strong VEGF-A & BMI-1, p16(+)Moderate p-AKT & BMI-1, high PDL1, mild VEGF-AHigh p-AKT & VEGF-A, mild PDL1 & BMI-1High VEGF-A, moderate p-AKT & PDL1, weak BMI-1, Gli-1(+)Weak p-AKT & VEGF-A, mild PDL1 & BMI-1Weak p-AKT, VEGF-A, & BMI-1, moderate PDL1Moderate p-AKT & VEGF-A, strong BMI-1, mild PDL1, Gli-1(+)High p-AKT, PDL1, & VEGF-A and moderate BMI-1NGSCCND1 gain, CDKN2A deletion, FRG1 mutation, HGF mutation, p53 mutation, ATR mutation, SMO mutation, RUNX1T1 mutationSTK11 mutation, PDGFRA mutation, IGF1 mutation, BCOR mutation, EGFR mutation, NOTCH1 mutation, MET mutation, IKZF1 mutation, NFKB1 mutation, DPYD mutation, FGFR4 mutation, BRCA1 mutation, MSH2 mutation, DNMT3A mutationKRAS mutation, MDM2 mutation, TMB-H, AXIN1 loss, RAD51D mutation, NOTCH1/2 mutation, ERBB4 mutation, PALB2 mutation, p53 mutation, POLE mutation, CASP8 mutation, BRCA2 mutation, RNF43 mutation, LRP1B mutation, MET mutationCDKN2A deletion, EGFR amplification, SMAD4 mutation, TMB-H, LRP1B mutation, APC mutation, CASP8 mutation, CREBBP mutation, PIK3CG mutation, NRAS mutation, ABL1 mutation, FGF23 mutation, HGF mutation, ATRX mutation, p53 mutation, ERBB2 mutation, ROS1 mutation, EP300 mutation, NRAS mutation, CDKN1A mutation, KDM6A mutation, FLT4 mutationCCND1 gain, CDKN2A deletion, FLCN mutation, TMB-H, LRP1B mutation, SMAD4 loss, SF3B1 mutation, FAT1 mutation, VHL mutation, NOTCH3 mutation, EPHA5 mutation, p53 mutation, ERCC2 mutationCCND1 gain, EGFR amplification, SMO mutation, ATR mutation, FAT1 loss, NTRK1 mutation, KMT2D mutation, p53 mutation, NOTCH3 mutationCDKN2A deletion, AXIN2 amplification, SMAD3 loss, HRAS mutation, ATR mutation, NF1 mutation. IGF1R mutation, FLCN mutation, KEAP1 mutation, ASXL1 mutation, PMS2 mutationCCND1 gain, NF1 loss, LRP1B mutation, NSD1 mutation, KMT2D mutation, p53 mutation, EPHA2 mutationFAT1 loss, CCND3/FGF10 amplification, PIK3CA H1047R mutation, STK11 mutation, RICTOR/FLCN amplification, VEGF-A amplification , TSC2 mutation, EPHB1 mutation, MAP2K4 mutation, KDM5A mutation, PDGFRB mutation, SETD2 mutation, RPTOR mutation, APC mutation, DDR2 mutation, ATM mutation, MDM2 mutation, p53 mutation, CDK12 mutation, HRAS mutation, MYC mutation, CDK8 mutation, ARID1B lossOutcomesBest; like TCGA CL (HPV+) subtypeLike TCGA basal subtype, but responded to particular treatments eachBasalBasalLike TCGA mesen-chymal subtype (HPV+)Like TCGA CL(HPV-) subtype, different characters between these 3 cell linesCL(HPV-) subtypeCL(HPV-) subtypeWorse; like TCGA EMT subtype (HPV-)Potential treatmentsAll sensitive maybe; Hedgehog inhibitor , HGF/c-MET inhibitor, and I/O could be tried(1) Taxane, cisplatin, PLKi (2) mTORi (3) IGF1Ri, METi, PDGFRi, FGFRi (4) Epigenetics (5) I/O(1) Taxane, cisplatin, 5-FU, PLKi (2) CDK4/6i (3) I/O (4) DDRi (5) KRASi, METi, HERi (6) p53 reactivator and MDM2/Mcl-1 inhibitor(1) Taxane, cisplatin, 5-FU, PLKi (2) CDK4/6i (3) Mild EGFRi response (4) I/O (5) NRASi, FGFRi, HGF/c-METi/ROS1i/HERi (6) p53 reactivator/DDRi/Epigenetics(1) Cisplatin, 5-FU (2) EGFRi and VEGFR2i (3) Weak to PLKi & CDK4/6i (4) I/O (5) mTORi (6) Ephi (7) DDR/Epigenetics (8) p53 reactivator (9) HIFi(1) Taxane and PLKi (2) EGFRi, VEGFR2i, CDK4/6i (3) NTRKi (4) Hedgehog inhibitor (5) DDRi, epigenetics,& p53 reactivator(1) Taxane &5-FU (2) EGFRi (3) HRASi (4) DDRi/Epigenetics (5) I/O (6) IGF1Ri (7) mTORi(1) EGFRi (2) CDK4/6i (3) I/O (4) Epigenetics (5) Ephi (6) p53 reactivator(1) CDK4/6 inhibitor (2) Multi-targeted VEGFR TKI (3) PI3K/AKT/mTOR inhibitor (4) ICIs combination (5) p53 reactivator/ DDR interventions/Epigenetics (6) Dasatinib, HRASi, EphB1/B4 interventions Further NGS analysis may translate these HNSCC cell lines to represent TCGA subtypes for the reference of future drug combinations, esp... Further NGS analysis may translate these HNSCC cell lines to represent TCGA subtypes for the reference of future drug combinations, esp. immunotherapy, basic/translational research, and animal models. LRP1B will be a potential ICIs efficacy biomarker in HNSCC.
Preclinical • Tumor mutational burden • BRCA Biomarker • PD(L)-1 Biomarker • IO biomarker
|
HER-2 (Human epidermal growth factor receptor 2) • KRAS (KRAS proto-oncogene GTPase) • PIK3CA (Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) • TMB (Tumor Mutational Burden) • ABL1 (ABL proto-oncogene 1) • NRAS (Neuroblastoma RAS viral oncogene homolog) • BRCA1 (Breast cancer 1, early onset) • BRCA2 (Breast cancer 2, early onset) • MYC (V-myc avian myelocytomatosis viral oncogene homolog) • ROS1 (Proto-Oncogene Tyrosine-Protein Kinase ROS) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • ATM (ATM serine/threonine kinase) • STK11 (Serine/threonine kinase 11) • HRAS (Harvey rat sarcoma viral oncogene homolog) • CDKN2A (Cyclin Dependent Kinase Inhibitor 2A) • DNMT3A (DNA methyltransferase 1) • PDGFRA (Platelet Derived Growth Factor Receptor Alpha) • NOTCH1 (Notch 1) • NF1 (Neurofibromin 1) • KEAP1 (Kelch Like ECH Associated Protein 1) • POLE (DNA Polymerase Epsilon) • AXL (AXL Receptor Tyrosine Kinase) • SF3B1 (Splicing Factor 3b Subunit 1) • ASXL1 (ASXL Transcriptional Regulator 1) • CCND1 (Cyclin D1) • MDM2 (E3 ubiquitin protein ligase) • PALB2 (Partner and localizer of BRCA2) • CXCR4 (Chemokine (C-X-C motif) receptor 4) • PDGFRB (Platelet Derived Growth Factor Receptor Beta) • KMT2D (Lysine Methyltransferase 2D) • LRP1B (LDL Receptor Related Protein 1B) • FGFR4 (Fibroblast growth factor receptor 4) • MSH2 (MutS Homolog 2) • RNF43 (Ring Finger Protein 43) • CDK12 (Cyclin dependent kinase 12) • SMAD4 (SMAD family member 4) • IKZF1 (IKAROS Family Zinc Finger 1) • ERCC2 (Excision repair cross-complementation group 2) • PMS2 (PMS1 protein homolog 2) • VHL (von Hippel-Lindau tumor suppressor) • APC (APC Regulator Of WNT Signaling Pathway) • ATRX (ATRX Chromatin Remodeler) • TSC2 (TSC complex subunit 2) • IGF1R (Insulin-like growth factor 1 receptor) • NOTCH2 (Notch 2) • CREBBP (CREB binding protein) • RUNX1T1 (RUNX1 Partner Transcriptional Co-Repressor 1) • SMO (Smoothened Frizzled Class Receptor) • BCOR (BCL6 Corepressor) • ERBB4 (erb-b2 receptor tyrosine kinase 4) • FAT1 (FAT atypical cadherin 1) • KDM6A (Lysine Demethylase 6A) • SETD2 (SET Domain Containing 2, Histone Lysine Methyltransferase) • PIK3CG (Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Gamma) • NOTCH3 (Notch Receptor 3) • ARID1B (AT-Rich Interaction Domain 1B) • EP300 (E1A binding protein p300) • FLT4 (Fms-related tyrosine kinase 4) • IGF1 (Insulin-like growth factor 1) • NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • RAD51D (RAD51 paralog D) • RICTOR (RPTOR Independent Companion Of MTOR Complex 2) • EPHA2 (EPH receptor A2) • BMI1 (BMI1 proto-oncogene, polycomb ring finger) • CASP8 (Caspase 8) • CCND3 (Cyclin D3) • BRD4 (Bromodomain Containing 4) • DDR2 (Discoidin domain receptor 2) • FLCN (Folliculin) • KDM5A (Lysine Demethylase 5A) • CDKN1A (Cyclin-dependent kinase inhibitor 1A) • DPYD (Dihydropyrimidine Dehydrogenase) • EPHA5 (EPH Receptor A5) • EPHB1 (EPH Receptor B1) • FGF10 (Fibroblast Growth Factor 10) • FGF23 (Fibroblast Growth Factor 23) • MAP2K4 (Mitogen-Activated Protein Kinase Kinase 4) • SMAD3 (SMAD Family Member 3)
|
TP53 mutation • KRAS mutation • BRCA2 mutation • BRCA1 mutation • EGFR mutation • TMB-H • NRAS mutation • PIK3CA mutation • EGFR amplification • ATM mutation • PIK3CA H1047R • STK11 mutation • DNMT3A mutation • PALB2 mutation • POLE mutation • NF1 mutation • NOTCH1 mutation • ASXL1 mutation • CDKN2A deletion • BCL2 overexpression • KEAP1 mutation • SF3B1 mutation • CDKN2A mutation • KMT2D mutation • CDK12 mutation • LRP1B mutation • VHL mutation • PIK3CA amplification • HRAS mutation • APC mutation • ATR mutation • ATRX mutation • CCND1 amplification • PDGFRA mutation • CREBBP mutation • MSH2 mutation • RNF43 mutation • ROS1 mutation • SMAD4 mutation • BCOR mutation • FGFR4 mutation • KDM6A mutation • RAD51D mutation • TSC2 mutation • FAT1 mutation • MYC mutation • ARID1B mutation • NOTCH3 mutation • PMS2 mutation • SMO mutation • IKZF1 mutation • MDM2 mutation • NTRK1 mutation • EP300 mutation • ERBB4 mutation • NSD1 mutation • PIK3CA H1047R + PIK3C2B amplification • PIK3CG mutation • SETD2 mutation • EPHA5 mutation • EPHB1 mutation • ERCC2 mutation • FGF10 amplification • FGF23 mutation • FLCN mutation • HGF mutation • PDGFRB mutation • RAD51 mutation
|
cisplatin • Gilotrif (afatinib) • dasatinib • 5-fluorouracil • Halaven (eribulin mesylate)
over1year
NSD1 Mutations and Pediatric High-Grade Gliomas: A Comparative Genomic Study in Primary and Recurrent Tumors. (PubMed, Diagnostics (Basel))
The presence of NSD1 mutations only at recurrence may suggest that they can be sub-clonal, while the presence in both primary and recurrence implies that they can also represent early and stable events. Furthermore, their presence only in primary, but not in recurrent tumors, suggest that NSD1 mutations may also be influenced by treatment.
Journal
|
NSD1 (Nuclear Receptor Binding SET Domain Protein 1)
|
NSD1 mutation
over1year
Histone methylation antagonism drives tumor immune evasion in squamous cell carcinomas. (PubMed, Mol Cell)
Inhibition of EZH2 restores immune infiltration and impairs the growth of Nsd1-mutant tumors. Thus, our work uncovers a druggable chromatin cross talk that regulates the viral mimicry response and enables immune evasion of DNA hypomethylated tumors.
Journal • Epigenetic controller
|
NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • IFNAR2 (Interferon Alpha And Beta Receptor Subunit 2)
|
NSD1 mutation
|
Tazverik (tazemetostat)
over1year
Identification of Alternative Transcripts of NSD1 gene in Sotos Syndrome patients and healthy subjects. (PubMed, Gene)
Moreover, one patient, bearing the NSD1 variant c.6010-10G>A, expressed an additional shorter transcript derived from an aberrant splicing event. These results may provide a basis to elucidate the impact of different NSD1 pathogenic variants on the heterogeneity of phenotype associated with Sotos syndrome.
Journal
|
NSD1 (Nuclear Receptor Binding SET Domain Protein 1)
|
NSD1 mutation
2years
NSD histone methyltransferases drive cell proliferation in HPV-negative head and neck squamous cell carcinoma (HNSCC) (AACR 2022)
Downstream signaling, gene expression effects, and possible cell cycle regulation by NSD enzymes remain to be investigated in more detail. Further, NSDs might be attractive targets for drug development, and targeting NSD1/NSD2 enzymes may be a new strategy for improving outcomes in HNSCC patients.
Epigenetic controller
|
NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • NSD3 (Nuclear Receptor Binding SET Domain Protein 3) • NSD2 (Nuclear Receptor Binding SET Domain Protein 2)
|
NSD1 mutation
over2years
A novel defined hypoxia-related gene signature to predict the prognosis of oral squamous cell carcinoma. (PubMed, Ann Transl Med)
Finally, we constructed a prognostic model of 6 sets of hypoxia-related genes (PGK1, JMJD6, S100A4, SLC2A3, DDIT4 and HK1) in OSCC. Hypoxia is closely related to immune cell infiltration, gene mutation, and prognosis in OSCC patients.
Journal • Gene Signature
|
NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • PGK1 (Phosphoglycerate Kinase 1) • S100A4 (S100 calcium binding protein A4)
|
NSD1 mutation
over2years
Identification of key factors shaping integrated levels of ACE2 and TMPRSS2 expression in head and neck squamous cell carcinoma. (PubMed, Front Biosci (Landmark Ed))
Furthermore, the site of onset, human papillomaviruses (HPV) status, and nuclear receptor binding SET domain protein 1 (NSD1) mutations were identified as the most important factors shaping TPSI levels. This study identified the infection risk of SARS-CoV-2 between tumor and normal tissues, and provided evidence for the risk stratification of HNSC.
Journal
|
NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • TMPRSS2 (Transmembrane serine protease 2)
|
NSD1 mutation
over2years
NSD1: A Lysine Methyltransferase between Developmental Disorders and Cancer. (PubMed, Life (Basel))
In pediatric hematological malignancies, a recurrent chromosomal translocation forms a NUP98-NSD1 fusion with SET-dependent leukemogenic activity, which seems targetable by small molecule inhibitors. To treat or prevent diseases driven by aberrant NSD1 activity, future research will need to pinpoint the mechanistic correlation between the NSD1 gene dosage and/or mutational status with development, homeostasis, and malignant transformation.
Review • Journal
|
NUP98 (Nucleoporin 98 And 96 Precursor 2) • NSD1 (Nuclear Receptor Binding SET Domain Protein 1)
|
NSD1 mutation
over2years
Establishment of a plasticity-associated risk model based on a SOX2- and SOX9-related gene set in head and neck squamous cell carcinoma. (PubMed, Mol Cancer Res)
Recent studies highlighted SOX2 and SOX9 as key determinants for cancer cell plasticity and demonstrated that cisplatin-induced adaptation in oral squamous cell carcinoma is acquired by an inverse regulation of both transcription factors...Finally, in silico drug screen analysis revealed numerous compounds targeting EGFR signaling with significantly lower efficacy for cancer cell lines with a higher risk phenotype, but also indicated potential vulnerabilities. Implications: The established risk model identifies patients with primary HNSCC, but also other cancers at a higher risk for treatment failure, who might benefit from a therapy targeting SOX2/SOX9-related gene regulatory and signaling networks.
Journal
|
KRAS (KRAS proto-oncogene GTPase) • NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • SOX2 • SOX9 (SRY-Box Transcription Factor 9)
|
NSD1 mutation
|
cisplatin