We investigated novel anti-HCC treatments through either the simultaneous inhibition of glycolysis and gluconeogenesis by "phloretin" and "sodium meta-arsenite", respectively (Combination 1); or the concurrent inhibition of glycolysis and induction of gluconeogenesis by phloretin and dexamethasone, respectively, (combination 2). Biochemically, both combinations caused a significant reduction in ATP levels, ALT, and AST activity compared to the other groups. In conclusion, we propose two novel phloretin-based combinations that can be used in treating HCC through the regulation of glucose metabolism and ATP production.
Finally, we illustrated in vivo anti-tumor effects of KML001 using an intracranial xenograft mouse model. These results suggest that KML001 could be an effective chemotherapeutic drug for the treatment of glioblastoma cancer patients with higher Akt activity and PTEN loss.