The formation of R-loop and G-quadruplex was found to be mutually exclusive. Therefore, our results suggest that AID can bind to the single-stranded region of the R-loop and G4 DNA, leading to the deamination of cytosines to uracil and induction of DNA breaks in one of the DNA strands, leading to double-strand break, which could culminate in t(8;14) chromosomal translocation.
Significant effects were observed only in cell lines bearing IGH/MYC abnormality but not in B-cell lines without this translocation nor primary B-cells. Our results indicate that AL928768.3 plays an important role in the development of Burkitt's lymphoma and suggest it and similar, yet undiscovered eRNAs as potential tissue-specific targets for cancer treatment.
In 2 DLBCL-BL, a dual MYC translocation/11q aberration pattern was detected. As a diagnostic algorithm, we, therefore, propose analysis of 11q status in MYC-negative high-grade lymphomas with features of BL, especially showing BCL2 negativity and a conspicuous coarse apoptotic debris in starry sky macrophages.
Strikingly, by inducing Mnt deletion within transplanted fully-malignant Em-Myc lymphoma cells, we significantly extended transplant recipient survival. The dependency of lymphomas on MNT for survival suggests that drugs inhibiting MNT could significantly boost therapy of MYC-driven tumors by enhancing intrinsic MYC-driven apoptosis.
In contrast to GCB-DLBCL, PTEN overexpression was tolerated by BL cell lines. We conclude that the molecular mechanisms instrumental to guarantee the survival of normal DZ B cells, including the tight regulation of the PTEN-PI3K-AKT axis, also operate in the survival/proliferation of BL.