miR-483-5p-mediated activating of IGF2/H19 enhancer up-regulates IGF2/H19 expression via DNA loops, thereby promoting the malignant progression of HCC.
Mechanistically, H19 competitively binds to the mRNA of YTHDC1 with MiR-107, and also interacts with the YTHDC1 protein, regulating the stability of SRSF1 and thereby affecting the alternative splicing of IL-6 and IL-10. Utilizing organoids and the patient-derived xenograft (PDX) model, it is found that ruxolitinib may represent a promising treatment option for PDAC patients with high H19 expression.
Comparison of PN to CNH demonstrates downregulation of WIF1, which encodes as a tumor suppressor, and loss of WIF1 expression might explain the progression from CNH to PN. Comparison of gene expression in PN and CNH with giant congenital nevus and malignant melanoma shows relative overexpression of IGF2 and H19 in CNH and PN, suggesting that abnormal imprinting and IGF2 overexpression may have integral functions in the foundation of CNH.
H19 has been shown to have a role in facilitating several cellular processes, including cell proliferation, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. This article summarizes the aberrant upregulation of H19 in human malignancies, indicating promising avenues for future investigations on cancer diagnostics and therapeutic interventions.
Overexpression of H19 in malignant tissues compared to adjacent non-malignant tissues marks H19 as an independent prognostic marker in CRC. Besides its prognostic value, H19 serves as a promising target for therapy in CRC treatment.
Spatial transcriptomics and single-nucleus RNAseq analyses identify a 60-gene signature in 11p15.5 altered hepatocytes. These data provide insights for 11p15.5 mosaicism detection and its functional consequences during the early steps of carcinogenesis.
Consistently, blockage of miR-107 activity alleviated the growth suppression phenotypes induced by H19 downregulation, suggesting that H19 serves as a molecular sponge for miR-107 to promote CDK6 expression and cell cycle progression. Together, this study demonstrates a mechanistic function of H19 in driving the proliferation of HCC cells and suggests H19 suppression as a novel approach for HCC treatment.
HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.
The high level of H19 enhanced the cytotoxicity of erlotinib by inducing ferroptosis. In conclusion, our data showed that β-elemene combined with erlotinib could enhance sensitivity to EGFR-TKIs through induction of ferroptosis via H19 in primary EGFR-TKI-resistant lung cancer, providing a promising strategy to overcome EGFR-TKI resistance in NSCLC patients.