Additionally, we identified GPR39 as a receptor for circulating GPNMB, with its absence negating the beneficial effects. These findings highlight a pivotal role of macrophage-derived GPNMBs in post-MI cardiac repair through GPR39 signaling.
Multivariate linear regression analysis further indicated that serum GPNMB levels negatively correlated with the systemic immune-inflammation index (SII, P < 0.05), and the urine GPNMB levels maintained a negative association with TBA (P < 0.05), additionally, urine GPNMB levels in men were significantly lower than in women (P < 0.05). The biofluid GPNMB was a strong clinical biomarker candidate for estimating biological aging.
Furthermore, this inhibition resulted in an enhanced ability to induce apoptosis. In light of our findings, it can be inferred that the expression of GPNMB is linked to metastasis and an unfavorable prognosis, thus suggesting its potential as a novel therapeutic target in the treatment of SCLC.
GPNMB expression is higher than EGFR in untreated HNSCC PT and corresponding LNM, while VEGF expression is comparable to EGFR. GPNMB is a promising target for fluorescent imaging in HNSCC.
We also show that GPNMB's ectodomain is released from the cell surface of TSC2-null cells by proteases ADAM10 and 17, and we identify the protease target sequence on GPNMB. Finally, we demonstrate that GPNMB's ectodomain is present at higher levels in LAM patient serum compared to healthy controls, and that ectodomain levels decrease with mTORC1 inhibition, making it a potential LAM biomarker.
The impact of host-derived GPNMB on tumor growth was confirmed in two distinct murine glioma cell lines in organotypic brain slices from GPNMB-KO and control mice. Using published data bases of human glioma, the elevated levels in TAMs could be confirmed and the GPNMB expression correlated with a poorer survival.
Therefore, we propose that GPNMB is one of multiple driver molecules in the acquisition of cellular migratory and invasive potential in bladder cancers. Moreover, we revealed that the tyrosine residue in the hemi-immunoreceptor tyrosine-based activation motif (hemITAM) is required for GPNMB-induced cellular motility.
Inhibiting autophagy reversed the effects of GPNMB. These findings suggest that GPNMB promotes neural injury repair after SCI, potentially through attenuating the inflammatory response, reducing oxidative stress, and inhibiting cell apoptosis.
Interestingly, the 125 I-o-Aβ1-42 degradations by MG-like cells from human-induced pluripotent stem cells was inhibited by the 9F5 antibody, suggesting that truncated GPNMB also serve as a scavenger receptor for o-Aβ1-42 in human MG. Our study demonstrates that the truncated GPNMB (the antigen for 9F5) binds to oligomeric form of Aβ1-42 and functions as a scavenger receptor on MG, and 9F5 antibody can act as a blocking antibody for the truncated GPNMB.
Furthermore, EZH2 supplementation or miR-361 depletion effectively abated the tumor-suppressive effect of HOMER3 knockdown on LIHC progression. In conclusion, HOMER3 mediated LIHC progression through the EZH2/miR-361/GPNMB axis.
Cathepsin K with a cutoff of any labeling, had lower sensitivity (78%) and similar specificity (94%) to GPNMB. This study highlights GPNMB as a highly sensitive marker for PEComas and suggests its potential use as an ancillary tool within a panel of markers for accurate classification of these tumors.
Western blotting results showed that knockdown of Gpnmb reduced the expression of Bcl-2 associated X (BAX) and cleaved-caspase 3, and increased the expression of Bcl-2 in HO treated MLE-12 cells. Furthermore, Gpnmb knockdown could significantly reduce reactive oxygen species (ROS) generation and improve the mitochondrial membrane potential. The present study showed that knockdown of Gpnmb may protect against HLI by repressing mitochondrial-mediated apoptosis.
Our results demonstrated that circ_0065214 regulated the expression of GPNMB by competitively binding to miR-188-3p, thus promoting the proliferation, migration and invasion of breast cancer cells and inhibiting autophagy. These findings provided an original therapeutic strategy for BC.
MyD88 signaling pathway plays an essential role in GPNMB MDSC-mediated tumor immune escape during CAC development and is a promising focus for revealing the mechanisms of MDSC that facilitate immunosuppression and tumor progression.
The rate of PTN, uPA, and GPNMB expression in OSCC tissues was high, and their expression was related to clinicopathological features such as lymph node metastasis and tumor invasion depth. The combined detection of each index has a predictive value for the prognosis of patients.
Moreover, GPNMB-positive macrophages exhibited the M2c phenotype. Our results indicate that persistently high GPNMB levels may be a prognostic marker in patients with ALI and ALF.
After identifying the correct dose of Gpnmb for triggering the neuroprotective pathway activation in the rat model (proved by phosphorylation of AKT), we are currently running a preclinical proof of concept study to verify the therapeutic potential of early administration of recombinant Gpnmb while monitoring sGpnmb as biomarker of target engagement. maurogiuseppe.spatafora01@universitadipavia.it
Dorsomorphin, the selective inhibitor on AMPK was introduced to study the downstream signaling through which the GPNMB works...GPNMB treatment significantly magnified the expression of p-AMPK while p-NFκB, IL-1β, IL-6 and TNF-α were suppressed; in the meantime, the combined administration of GPNMB and AMPK inhibitor could decrease the intensity of p-AMPK and reverse the quantity of p-NFκB and the above inflammatory cytokines. GPNMB has the potential of ameliorating the brain edema and neuroinflammation, protecting the BBB and improving the neurological outcome, possibly via the AMPK/NFκB signaling pathway.
Two of 8 clear cell RCC showed focal weak staining, while 6/8 were negative. In conclusion, the results support the use of GPNMB to distinguish RCCFMS with TSC1/2/MTOR alterations from others with similar morphology.