Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. (PubMed, Comput Biol Med)
Finally, the RF model had the best results in the diagnosis of colon cancer versus control group fold cross-validation with an average accuracy of 99.81%, F1 value reaching 0.9968, accuracy of 99.88%, and recall of 99.5%, and an average accuracy of 91.5%, F1 value reaching 0.7679, accuracy of 86.94%, and recall in the diagnosis of colon cancer stages I, II, III and IV. The recall rate reached 73.04%, and eight genes associated with colon cancer prognosis were identified for GCNT2, GLDN, SULT1B1, UGT2B15, PTGDR2, GPR15, BMP5 and CPT2.