Mechanistically, FOXP1 could directly bind the IRF1 promoter, which triggered the transcriptional activity of IRF1. Taken together, FOXP1 suppressed PC growth via IRF1-dependent manner, serving as a potential prognostic biomarker for patients with PC.
XIST knockdown inhibited autophagy and carboplatin resistance of OC through FOXP1/protein kinase B (AKT)/mammalian target of rapamycin pathway by targeting miR-506-3p.
The cyclicity of circIFITM1 was confirmed by agarose gel electrophoresis and Sanger sequencing, and the stability of circIFITM1 was confirmed by actinomycin D assay...The overexpression of circIFITM1 downregulated miR-802 and upregulated FOXP1. circIFITM1 facilitates the proliferative and invasive abilities via miR-802/FOXP1 in Lovo cells.
Circ_OTUD7A promoted the progression of DLBCL by regulating the miR-431-5p/FOXP1 axis, which suggested that circ_OTUD7A might function as an oncogene in DLBCL.
Moreover, FOXP1 silencing via lentivirus or adeno-associated virus (AAV)-mediated delivery of shRNA suppressed osteosarcoma development and progression in cell-derived and patient-derived xenograft animal models. Taken together, we demonstrate that FOXP1, which is transactivated by ERK/JNK-c-JUN/c-FOS, drives osteosarcoma development by regulating the p53-P21/RB signaling cascade, suggesting that FOXP1 is a potential target for osteosarcoma therapy.
In summary, we identify FoxP1 as a novel repressor of skeletal muscle gene expression that is increased in cancer cachexia, whose up-regulation is sufficient to induce skeletal muscle wasting and weakness, and required for the normal wasting response to cancer.