^
Contact us  to learn more about
our Premium Content:  News alerts, weekly reports and conference planners
BIOMARKER:

ERCC2 mutation

i
Other names: ERCC2, EM9, MAG, MGC102762, MGC126218, MGC126219, TFIIH, XPD, Excision repair cross-complementation group 2
Entrez ID:
Related biomarkers:
7d
Phase II Trial of Risk-Enabled Therapy After Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer (RETAIN 1). (PubMed, J Clin Oncol)
Patients with MIBC treated with AMVAC followed by a risk-adapted approach to local consolidation achieved a 2-year MFS rate of 73%. The primary end point was not met, but 17% of all enrolled patients and 48% of the AS group avoided cystectomy without metastatic disease.
P2 data • Journal
|
RB1 (RB Transcriptional Corepressor 1) • ERCC2 (Excision repair cross-complementation group 2) • FANCC (FA Complementation Group C)
|
ATM mutation • ERCC2 mutation
|
cisplatin • doxorubicin hydrochloride • methotrexate • vinblastine
1m
Predictive Value of Neutrophil Extracellular Traps in Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer. (PubMed, Mol Carcinog)
Cisplatin-based chemotherapy is the recommended therapy for muscle-invasive bladder cancer (MIBC)...Patients with high levels of NETs predicted poor response to neoadjuvant chemotherapy. This study was the first to reveal the correlation between the level of NETs in MIBC and the efficacy of chemotherapy, which may provide a theoretical basis regarding NETs inhibitors.
Journal • BRCA Biomarker
|
BRCA2 (Breast cancer 2, early onset) • ERCC2 (Excision repair cross-complementation group 2)
|
BRCA2 mutation • ERCC2 mutation
|
cisplatin
2ms
DNA Damage Response Alterations Predict for Neoadjuvant Chemotherapy Sensitivity in Muscle-Invasive Bladder Cancer: A Correlative Analysis of the SWOG S1314 Trial. (PubMed, JCO Precis Oncol)
Deleterious DDR alterations were associated with pathologic response following NAC in S1314. Functional validation of ERCC2 and other DDR alterations is underway to help refine such alterations as biomarkers of NAC in patients with bladder cancer.
Journal
|
ERCC2 (Excision repair cross-complementation group 2)
|
ERCC2 mutation
|
MSK-IMPACT
|
cisplatin
1year
Genomic analysis of a Palestinian family with inherited cancer syndrome: a next-generation sequencing study. (PubMed, Front Genet)
Our findings confirm that the homozygous ERCC2 (p.R683Q) mutation was responsible for causing melanoma and other cancer types in the family. Our work highlights the value to decipher the mutational background of familial cancers, especially CM, in the Palestinian population to guide diagnosis, prevention, and treatment of affected patients and their families.
Journal • Next-generation sequencing
|
ERCC2 (Excision repair cross-complementation group 2) • WRN (WRN RecQ Like Helicase) • TYRP1 (Tyrosinase Related Protein 1)
|
WRN mutation • ERCC2 mutation
1year
Nucleotide excision repair deficiency is a targetable therapeutic vulnerability in clear cell renal cell carcinoma. (PubMed, Sci Rep)
Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.
Journal
|
ERCC2 (Excision repair cross-complementation group 2) • PTGR1 (Prostaglandin Reductase 1) • DRD (DNA Repair Deficiency)
|
DDR • DRD • ERCC2 mutation • PTGR1 expression
|
irofulven-1 (LP-100)
1year
Genomic Tumor Correlates of Clinical Outcomes Following Organ-Sparing Chemoradiation Therapy for Bladder Cancer. (PubMed, Clin Cancer Res)
Our data identify ERCC2 mutation as a candidate biomarker associated with sensitivity and long-term response to chemoradiation in MIBC. These findings warrant validation in independent cohorts.
Clinical data • Journal • Tumor mutational burden
|
TMB (Tumor Mutational Burden) • ERCC2 (Excision repair cross-complementation group 2)
|
ERCC2 mutation
|
cisplatin
over1year
Cisplatin and Gemcitabine Hydrochloride With or Without Berzosertib in Treating Patients With Metastatic Urothelial Cancer (clinicaltrials.gov)
P2, N=91, Active, not recruiting, National Cancer Institute (NCI) | Trial completion date: Aug 2023 --> Apr 2024 | Trial primary completion date: Aug 2023 --> Apr 2023
Trial completion date • Trial primary completion date • Metastases
|
ERCC2 (Excision repair cross-complementation group 2) • CDKN1A (Cyclin-dependent kinase inhibitor 1A)
|
ERCC2 mutation
|
cisplatin • gemcitabine • berzosertib (M6620)
almost2years
Benign oncocytic tumors in the setting of HLRCC syndrome (AACR 2023)
HLRCC cancers can have a variety of morphologic patterns and frequently have oncocytic features. Clinical information, genetic testing and special techniques are helpful in the diagnosis of these high-grade tumors. Recognizing that other benign indolent tumors with oncocytic features can occur in this syndrome is important to avoid errors in diagnosis and treatment.
ERCC2 (Excision repair cross-complementation group 2) • PAX8 (Paired box 8)
|
ERCC2 mutation
|
TruSight Oncology 500 Assay
almost2years
Different treatment response in several head and neck squamous cell carcinoma (HNSCC) cell lines reflecting underlying genomic and molecular signatures (AACR 2023)
PI3K/mTOR dual inhibition, PI3Kalpha inhibitor, AKT inhibitor, FGFR inhibitor, ALK/IGF1R inhibitor, CDK4/6 inhibitor, BCl2 inhibitor, WEE1 inhibitor, ATR inhibitor, DNA-PK inhibitor, AT2AR inhibitor, Mcl-1 inhibitor, MEK1/2 inhibitor, EZH2 inhibitor, HDAC inhibitor, CDK9 inhibitor, DNMT3 inhibitor, BRD4/BET inhibitor, JAK2 inhibitor, CXCR4 inhibitor, FAK inhibitor, BTK inhibitor, eribulin, & VEGFR2/ PDGFR/FGFR or VEGFR2/c-MET/Axl triple blockage might be effective on TW2.6 and reverse treatment refractoriness, maybe through the inhibition of mesenchymal transformation, pRB, & PI3K/AKT /mTOR signaling and the modulation of stemness & PD1/PDL1 pathway...All cell lines will be tried to be categorized as TCGA subtypes for the reference of future drug combinations.Cell linesSCC25KBSASCAL27FaDuSCC15SCC9SCC4TW2.6Differ- entiationWellPoorPoorPoorPoorWellWellWellWell, but rapidly replicated, with high hyper-diploidy & complex rearrangementsHPV statusHPV 16/18HPV18--HPV 16/18--HPV 6/11-EGFR statusMediumLowHighHighMediumHighLowMedium to highUnknownDocetaxel sensitivity+++++++++++++ to +++++-+Cisplatin sensitivity+++++++++++++- to +-- to +5-FU sensitivity+++++++++++-+ to ++-- to +Afatinib sensitivity+++- to +-+++++ to +++++++++-Polo-like kinase Inhibitor sensitivity+++++++++++++ to +++- to +-- to +VEGFR2 Inhibitor sensitivity----+++++--++PI3K/ mTOR inhibitorAll cell lines sensitiveCDK4/6 Inhibitor response+++- to ++++++ to +++++++++++++ to +++Western blotsWeak p-AKT & VEGF-A, mild PDL1 and BMI-1, Gli-1(+)Weak p-AKT, mild PDL1 and strong VEGF-A & BMI-1, p16(+)Moderate p-AKT & BMI-1, high PDL1, mild VEGF-AHigh p-AKT & VEGF-A, mild PDL1 & BMI-1High VEGF-A, moderate p-AKT & PDL1, weak BMI-1, Gli-1(+)Weak p-AKT & VEGF-A, mild PDL1 & BMI-1Weak p-AKT, VEGF-A, & BMI-1, moderate PDL1Moderate p-AKT & VEGF-A, strong BMI-1, mild PDL1, Gli-1(+)High p-AKT, PDL1, & VEGF-A and moderate BMI-1NGSCCND1 gain, CDKN2A deletion, FRG1 mutation, HGF mutation, p53 mutation, ATR mutation, SMO mutation, RUNX1T1 mutationSTK11 mutation, PDGFRA mutation, IGF1 mutation, BCOR mutation, EGFR mutation, NOTCH1 mutation, MET mutation, IKZF1 mutation, NFKB1 mutation, DPYD mutation, FGFR4 mutation, BRCA1 mutation, MSH2 mutation, DNMT3A mutationKRAS mutation, MDM2 mutation, TMB-H, AXIN1 loss, RAD51D mutation, NOTCH1/2 mutation, ERBB4 mutation, PALB2 mutation, p53 mutation, POLE mutation, CASP8 mutation, BRCA2 mutation, RNF43 mutation, LRP1B mutation, MET mutationCDKN2A deletion, EGFR amplification, SMAD4 mutation, TMB-H, LRP1B mutation, APC mutation, CASP8 mutation, CREBBP mutation, PIK3CG mutation, NRAS mutation, ABL1 mutation, FGF23 mutation, HGF mutation, ATRX mutation, p53 mutation, ERBB2 mutation, ROS1 mutation, EP300 mutation, NRAS mutation, CDKN1A mutation, KDM6A mutation, FLT4 mutationCCND1 gain, CDKN2A deletion, FLCN mutation, TMB-H, LRP1B mutation, SMAD4 loss, SF3B1 mutation, FAT1 mutation, VHL mutation, NOTCH3 mutation, EPHA5 mutation, p53 mutation, ERCC2 mutationCCND1 gain, EGFR amplification, SMO mutation, ATR mutation, FAT1 loss, NTRK1 mutation, KMT2D mutation, p53 mutation, NOTCH3 mutationCDKN2A deletion, AXIN2 amplification, SMAD3 loss, HRAS mutation, ATR mutation, NF1 mutation. IGF1R mutation, FLCN mutation, KEAP1 mutation, ASXL1 mutation, PMS2 mutationCCND1 gain, NF1 loss, LRP1B mutation, NSD1 mutation, KMT2D mutation, p53 mutation, EPHA2 mutationFAT1 loss, CCND3/FGF10 amplification, PIK3CA H1047R mutation, STK11 mutation, RICTOR/FLCN amplification, VEGF-A amplification , TSC2 mutation, EPHB1 mutation, MAP2K4 mutation, KDM5A mutation, PDGFRB mutation, SETD2 mutation, RPTOR mutation, APC mutation, DDR2 mutation, ATM mutation, MDM2 mutation, p53 mutation, CDK12 mutation, HRAS mutation, MYC mutation, CDK8 mutation, ARID1B lossOutcomesBest; like TCGA CL (HPV+) subtypeLike TCGA basal subtype, but responded to particular treatments eachBasalBasalLike TCGA mesen-chymal subtype (HPV+)Like TCGA CL(HPV-) subtype, different characters between these 3 cell linesCL(HPV-) subtypeCL(HPV-) subtypeWorse; like TCGA EMT subtype (HPV-)Potential treatmentsAll sensitive maybe; Hedgehog inhibitor , HGF/c-MET inhibitor, and I/O could be tried(1) Taxane, cisplatin, PLKi (2) mTORi (3) IGF1Ri, METi, PDGFRi, FGFRi (4) Epigenetics (5) I/O(1) Taxane, cisplatin, 5-FU, PLKi (2) CDK4/6i (3) I/O (4) DDRi (5) KRASi, METi, HERi (6) p53 reactivator and MDM2/Mcl-1 inhibitor(1) Taxane, cisplatin, 5-FU, PLKi (2) CDK4/6i (3) Mild EGFRi response (4) I/O (5) NRASi, FGFRi, HGF/c-METi/ROS1i/HERi (6) p53 reactivator/DDRi/Epigenetics(1) Cisplatin, 5-FU (2) EGFRi and VEGFR2i (3) Weak to PLKi & CDK4/6i (4) I/O (5) mTORi (6) Ephi (7) DDR/Epigenetics (8) p53 reactivator (9) HIFi(1) Taxane and PLKi (2) EGFRi, VEGFR2i, CDK4/6i (3) NTRKi (4) Hedgehog inhibitor (5) DDRi, epigenetics,& p53 reactivator(1) Taxane &5-FU (2) EGFRi (3) HRASi (4) DDRi/Epigenetics (5) I/O (6) IGF1Ri (7) mTORi(1) EGFRi (2) CDK4/6i (3) I/O (4) Epigenetics (5) Ephi (6) p53 reactivator(1) CDK4/6 inhibitor (2) Multi-targeted VEGFR TKI (3) PI3K/AKT/mTOR inhibitor (4) ICIs combination (5) p53 reactivator/ DDR interventions/Epigenetics (6) Dasatinib, HRASi, EphB1/B4 interventions Further NGS analysis may translate these HNSCC cell lines to represent TCGA subtypes for the reference of future drug combinations, esp... Further NGS analysis may translate these HNSCC cell lines to represent TCGA subtypes for the reference of future drug combinations, esp. immunotherapy, basic/translational research, and animal models. LRP1B will be a potential ICIs efficacy biomarker in HNSCC.
Preclinical • Tumor mutational burden • BRCA Biomarker • PD(L)-1 Biomarker • IO biomarker
|
HER-2 (Human epidermal growth factor receptor 2) • KRAS (KRAS proto-oncogene GTPase) • PIK3CA (Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha) • TMB (Tumor Mutational Burden) • ABL1 (ABL proto-oncogene 1) • NRAS (Neuroblastoma RAS viral oncogene homolog) • BRCA1 (Breast cancer 1, early onset) • BRCA2 (Breast cancer 2, early onset) • MYC (V-myc avian myelocytomatosis viral oncogene homolog) • ROS1 (Proto-Oncogene Tyrosine-Protein Kinase ROS) • NTRK1 (Neurotrophic tyrosine kinase, receptor, type 1) • ATM (ATM serine/threonine kinase) • STK11 (Serine/threonine kinase 11) • HRAS (Harvey rat sarcoma viral oncogene homolog) • CDKN2A (Cyclin Dependent Kinase Inhibitor 2A) • DNMT3A (DNA methyltransferase 1) • PDGFRA (Platelet Derived Growth Factor Receptor Alpha) • NOTCH1 (Notch 1) • NF1 (Neurofibromin 1) • KEAP1 (Kelch Like ECH Associated Protein 1) • POLE (DNA Polymerase Epsilon) • AXL (AXL Receptor Tyrosine Kinase) • SF3B1 (Splicing Factor 3b Subunit 1) • ASXL1 (ASXL Transcriptional Regulator 1) • CCND1 (Cyclin D1) • MDM2 (E3 ubiquitin protein ligase) • PALB2 (Partner and localizer of BRCA2) • CXCR4 (Chemokine (C-X-C motif) receptor 4) • PDGFRB (Platelet Derived Growth Factor Receptor Beta) • KMT2D (Lysine Methyltransferase 2D) • LRP1B (LDL Receptor Related Protein 1B) • FGFR4 (Fibroblast growth factor receptor 4) • MSH2 (MutS Homolog 2) • RNF43 (Ring Finger Protein 43) • CDK12 (Cyclin dependent kinase 12) • SMAD4 (SMAD family member 4) • IKZF1 (IKAROS Family Zinc Finger 1) • ERCC2 (Excision repair cross-complementation group 2) • PMS2 (PMS1 protein homolog 2) • VHL (von Hippel-Lindau tumor suppressor) • APC (APC Regulator Of WNT Signaling Pathway) • ATRX (ATRX Chromatin Remodeler) • TSC2 (TSC complex subunit 2) • IGF1R (Insulin-like growth factor 1 receptor) • NOTCH2 (Notch 2) • CREBBP (CREB binding protein) • RUNX1T1 (RUNX1 Partner Transcriptional Co-Repressor 1) • SMO (Smoothened Frizzled Class Receptor) • BCOR (BCL6 Corepressor) • ERBB4 (erb-b2 receptor tyrosine kinase 4) • FAT1 (FAT atypical cadherin 1) • KDM6A (Lysine Demethylase 6A) • SETD2 (SET Domain Containing 2, Histone Lysine Methyltransferase) • PIK3CG (Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Gamma) • NOTCH3 (Notch Receptor 3) • ARID1B (AT-Rich Interaction Domain 1B) • EP300 (E1A binding protein p300) • FLT4 (Fms-related tyrosine kinase 4) • IGF1 (Insulin-like growth factor 1) • NSD1 (Nuclear Receptor Binding SET Domain Protein 1) • RAD51D (RAD51 paralog D) • RICTOR (RPTOR Independent Companion Of MTOR Complex 2) • EPHA2 (EPH receptor A2) • BMI1 (BMI1 proto-oncogene, polycomb ring finger) • CASP8 (Caspase 8) • CCND3 (Cyclin D3) • BRD4 (Bromodomain Containing 4) • DDR2 (Discoidin domain receptor 2) • FLCN (Folliculin) • KDM5A (Lysine Demethylase 5A) • CDKN1A (Cyclin-dependent kinase inhibitor 1A) • DPYD (Dihydropyrimidine Dehydrogenase) • EPHA5 (EPH Receptor A5) • EPHB1 (EPH Receptor B1) • FGF10 (Fibroblast Growth Factor 10) • FGF23 (Fibroblast Growth Factor 23) • MAP2K4 (Mitogen-Activated Protein Kinase Kinase 4) • SMAD3 (SMAD Family Member 3)
|
TP53 mutation • KRAS mutation • BRCA2 mutation • BRCA1 mutation • EGFR mutation • TMB-H • NRAS mutation • PIK3CA mutation • EGFR amplification • ATM mutation • PIK3CA H1047R • STK11 mutation • DNMT3A mutation • PALB2 mutation • POLE mutation • NF1 mutation • NOTCH1 mutation • ASXL1 mutation • CDKN2A deletion • BCL2 overexpression • KEAP1 mutation • SF3B1 mutation • CDKN2A mutation • KMT2D mutation • CDK12 mutation • LRP1B mutation • VHL mutation • PIK3CA amplification • HRAS mutation • APC mutation • ATR mutation • ATRX mutation • CCND1 amplification • PDGFRA mutation • CREBBP mutation • MSH2 mutation • RNF43 mutation • ROS1 mutation • SMAD4 mutation • BCOR mutation • FGFR4 mutation • KDM6A mutation • RAD51D mutation • TSC2 mutation • FAT1 mutation • MYC mutation • ARID1B mutation • NOTCH3 mutation • PMS2 mutation • SMO mutation • IKZF1 mutation • MDM2 mutation • NTRK1 mutation • EP300 mutation • ERBB4 mutation • NSD1 mutation • PIK3CA H1047R + PIK3C2B amplification • PIK3CG mutation • SETD2 mutation • EPHA5 mutation • EPHB1 mutation • ERCC2 mutation • FGF10 amplification • FGF23 mutation • FLCN mutation • HGF mutation • PDGFRB mutation • RAD51 mutation
|
cisplatin • Gilotrif (afatinib) • dasatinib • 5-fluorouracil • Halaven (eribulin mesylate)
almost2years
Actionable genomic landscapes from a real-world cohort of urothelial carcinoma patients. (PubMed, Urol Oncol)
Important subsets of patients demonstrate genetic alterations in potentially actionable molecular pathways at all stages. This analysis found minimal variability in these alterations across stages, providing rationale for early identification of genetic alterations and personalization of therapies at all stages for patients with bladder cancer.
Real-world evidence • Journal • Tumor mutational burden • PD(L)-1 Biomarker • MSi-H Biomarker • BRCA Biomarker • IO biomarker • Real-world
|
PD-L1 (Programmed death ligand 1) • TMB (Tumor Mutational Burden) • BRCA2 (Breast cancer 2, early onset) • MSI (Microsatellite instability) • FGFR2 (Fibroblast growth factor receptor 2) • HRD (Homologous Recombination Deficiency) • RB1 (RB Transcriptional Corepressor 1) • ERCC2 (Excision repair cross-complementation group 2) • MUTYH (MutY homolog) • NTRK (Neurotrophic receptor tyrosine kinase) • FANCC (FA Complementation Group C)
|
PD-L1 expression • TMB-H • MSI-H/dMMR • FGFR2 mutation • RB1 mutation • ERCC2 mutation • NTRK fusion
|
Tempus xT Assay
2years
Investigation of prognostic biomarkers in patients with urothelial carcinoma treated with platinum-based regimens. (PubMed, Urol Oncol)
No association was seen herein between DDR mutations, TILs, PD-L1, CD8 expression or IHC-based subtypes and patient survival; these observations warrant validation within a larger cohort.
Journal • BRCA Biomarker • PD(L)-1 Biomarker • IO biomarker
|
PD-L1 (Programmed death ligand 1) • TP53 (Tumor protein P53) • BRCA2 (Breast cancer 2, early onset) • ARID1A (AT-rich interaction domain 1A) • CD8 (cluster of differentiation 8) • ERCC2 (Excision repair cross-complementation group 2) • GATA3 (GATA binding protein 3)
|
PD-L1 expression • TP53 mutation • BRCA2 mutation • ARID1A mutation • ERCC2 mutation
2years
Establishment of a human induced pluripotent stem cell line, KMUGMCi003-A, from a patient with trichothiodystrophy 1 (TTD1) bearing compound heterozygous missense mutations in the ERCC2 gene. (PubMed, Stem Cell Res)
The putative compound heterozygous mutation in ERCC2 will cause the abnormal protein, which is known to associated with TTD1. The established human induced pluripotent cell (hiPSC) line will enable proper in vitro disease modelling of TTD1.
Preclinical • Journal
|
ERCC2 (Excision repair cross-complementation group 2)
|
ERCC2 mutation
over2years
Cisplatin and Gemcitabine Hydrochloride With or Without Berzosertib in Treating Patients With Metastatic Urothelial Cancer (clinicaltrials.gov)
P2, N=90, Active, not recruiting, National Cancer Institute (NCI) | Trial completion date: Aug 2022 --> Aug 2023 | Trial primary completion date: Aug 2022 --> Aug 2023
Trial completion date • Trial primary completion date
|
ERCC2 (Excision repair cross-complementation group 2) • CDKN1A (Cyclin-dependent kinase inhibitor 1A)
|
ERCC2 mutation
|
cisplatin • gemcitabine • berzosertib (M6620)