These findings establish XZ739 as a promising therapeutic candidate for BCL-XL-dependent CCA, highlighting its translational potential for rational combination with chemotherapy to overcome resistance while mitigating hematologic toxicity.
KRAS inhibitors, including KRAS G12D inhibitor MRTX1133, are promising therapeutics against KRAS-mutated pancreatic ductal adenocarcinoma (PDAC), but drug resistance limits their efficacy. Our study reveals that robust induction of apoptosis using a combination of BCL-xL PROTAC degrader and an mTOR inhibitor, significantly enhances MRTX1133 efficacy in PDAC models without increasing toxicity to normal tissues.
Based on the rapid recovery of transient thrombocytopenia that occurred only in the first cycle and the degradation of BCL-XL in peripheral leukocytes, the RP2D of DT2216 is 0.4 mg/kg IV BIW. (NCT04886622).
Interestingly, inhibition of BCL-XL in doxorubicin-persistent OXPHOS-high TNBC cells rapidly abrogated mitochondrial elongation and respiratory function, followed by caspase 3/7 activation and cell death. The platelet-sparing proteolysis-targeted chimera (PROTAC) BCL-XL degrader DT2216 enhanced the efficacy of doxorubicin against TNBC xenografts in vivo without induction of thrombocytopenia that is often observed with the first-generation BCL-XL inhibitors, supporting the development of this combinatorial treatment strategy for eliminating dormant tumor cells that persist after treatment with anthracycline-based chemotherapy.
Interestingly, inhibition of BCL-XL in doxorubicin-persistent OXPHOS-high TNBC cells rapidly abrogated mitochondrial elongation and respiratory function, followed by caspase 3/7 activation and cell death. The platelet-sparing proteolysis targeted chimera (PROTAC) BCL-XL degrader DT2216 enhanced the efficacy of doxorubicin against TNBC xenografts in vivo without induction of thrombocytopenia that is often observed with the first-generation BCL-XL inhibitors, supporting the development of this combinatorial treatment strategy for eliminating dormant tumor cells that persist after treatment with anthracycline-based chemotherapy.
We combined A-1331852 and S63845 with IKE or RSL3 (ferroptosis-inducing drugs). These data indicate that BCL-xL maintains ChRCC cell survival by suppressing apoptosis. The BCL-xL-specific PROTAC DT2216, currently in clinical trials, may provide an opportunity for ChRCC therapy.
The combination of DHODH inhibition with Brequinar and BCL-XL degradation by DT2216, a proteolysis targeting chimera (PROTAC), significantly inhibits PDAC tumor growth. These data define mechanisms of adaptation to DHODHi and support combination therapy targeting BCL-XL in PDAC.
In HGSOC xenografts, targeted degradation of BCL-XL using the platelet-sparing proteolysis-targeting chimera (PROTAC) DT2216 matches the efficacy of paclitaxel monotherapy while avoiding the chronic thrombocytopenia induced by BCL-XL inhibitors such as navitoclax (ABT-263). Moreover, DT2216 treatment blunts the rapid apoptotic adaptation caused by other BCL-X L inhibitors, indicating that targeted degradation of pro-survival proteins may yield more durable responses than inhibition alone. These findings uncover a mechanistic framework for safely exploiting the apoptotic dependency convergence caused by mitotic arrest and substrate detachment and support the clinical development of BCL-XL-targeting PROTACs to overcome chemoresistance in ovarian cancer and other solid tumors.
Moreover, the Bcl-xl inhibitors A-1155463 and DT2216 profoundly augmented apoptotic cell death when administered in association with zotatifin. From a clinical standpoint, these results suggest that zotatifin improves patient outcomes by inhibiting iCCA growth and reducing tumor aggressiveness. Furthermore, combining zotatifin with other drugs could represent a promising therapeutic strategy for targeting iCCA.