Moreover, Dicer1 overexpression led to decreased proliferation, invasion, and increased apoptosis. Our findings deepen the understanding of Dicer1's role in thyroid cancer, demonstrating that both complete elimination and overexpression of Dicer1 inhibit thyroid oncogenesis, highlighting Dicer1 as a promising target for novel therapeutic strategies.
Furthermore, ADSL overexpression reversed Dicer silencing induced DTIC resistance and cancer stemness. These findings indicate that Dicer-mediated ADSL regulation influences DTIC sensitivity and stemness in melanoma cells.
Recombinant human IL-8 (rhIL-8) reversed the inhibitory effect of Dicer on proliferation (P < .01), migration (P = .003), and invasion (P = .001), whereas IL-8 inhibitor of reparixin enhanced inhibitory effect of Dicer on proliferation (P < .05), migration (P = .008), and invasion (P = .000). Animal experiments also demonstrated that Dicer cooperated with lenvatinib to inhibit the growth of HCC tumors (P < .05). Dicer cooperated with lenvatinib to inhibit HCC growth via downregulating IL-8, and Dicer displayed its potential capability to enhance the anti-tumor effect of lenvatinib.
Suppression of Dicer inhibited miR-200b expression, whereas miR-200b suppression recovered Dicer knockdown-induced migration, invasion, and cancer stem cells (CSCs) properties of the breast cancer cells. Thus, our findings reveal that Dicer is a crucial regulator of the migration, invasion, and CSCs properties of breast cancer cells and is significantly associated with poor survival in patients with breast cancer.
Importantly, Dicer1 overexpression abolished the suppression of miR-186 mimics on cell proliferation, migration, and invasion of HCC827 and A549 cells. These results indicated that the miR-186/Dicer1 pathway is critical for regulating LUAD cell proliferation, migration, and invasion.
Our finding demonstrated the calcitriol might increase indication of trastuzumab by inducing HER2 overexpression in GC patients. Dicer would be a potential target that extend the clinical indications of HER2 antibody in patients with low or negative HER2, who were not fit for HER2 antibody treatment before.
Injection with miR-BART6-5p inhibitors in nude mice after 6-Gy irradiation contributed to the overexpression of Dicer1 and the inhibition of tumor growth. EBV-miR-BART6-5p may target Dicer1 to facilitate proliferation and metastasis of NPC cells and suppress apoptosis, thus being a new target for NPC therapy.
Suppression of Dicer obviously decreased gemcitabine resistance in PANC-1/GEM cells; consistently, overexpression of Dicer in PANC-1 cells increased gemcitabine resistance. Moreover, we identified that transcriptional factor Sp1 targeted the promoter region of Dicer and found ERK/Sp1 signaling regulated Dicer expression in PANC-1/GEM cells, as well as positively correlated with pancreatic cancer progression and suggest that targeting the ERK/Sp1/Dicer pathway has potential therapeutic value for pancreatic cancer with acquired resistance to gemcitabine.
The differentiation transcription factors NKX2.1, PAX8, and CREB act in a positive feedback loop with DICER1. As the expression of these transcription factors is markedly diminished in thyroid cancer, our findings suggest that DICER1 downregulation in this cancer is mediated, at least partly, through impairment of its transcription.
DICER1-AS1 acts as an oncogenic lncRNA in CRC via modulating miR-296-5p/STAT3 axis. Our results provide a new direction for the diagnosis and treatment of CRC.